Automated selection of parameters using Tabu Search in image segmentation

K. Lekshmi, K. Rubasoundar, E. Abinaya, P. Gayathri, T. Keerthana
{"title":"Automated selection of parameters using Tabu Search in image segmentation","authors":"K. Lekshmi, K. Rubasoundar, E. Abinaya, P. Gayathri, T. Keerthana","doi":"10.1109/ISCO.2016.7726940","DOIUrl":null,"url":null,"abstract":"Segmentation is a process to obtain the desirable features in image processing. However, the existing techniques that use the multilevel thresholding method in image segmentation are computationally demanding due to the lack of an automatic parameter selection process. This paper proposes an automatic parameter selection technique called an automatic multilevel thresholding algorithm using stratified sampling and Tabu Search (AMTSSTS) to remedy the limitations. It automatically determines the appropriate threshold number and values by (1) dividing an image into even strata (blocks) to extract samples; (2) applying a Tabu Search-based optimization technique on these samples to maximize the ratios of their means and variances; (3)preliminarily determining the threshold number and values based on the optimized samples; and (4) further optimizing these samples using a novel local criterion function that combines with the property of local continuity of an image. Experiments on Berkeley datasets show that AMTSSTS is an efficient and effective technique which can provide smoother results than several developed methods in recent years.","PeriodicalId":320699,"journal":{"name":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Intelligent Systems and Control (ISCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCO.2016.7726940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Segmentation is a process to obtain the desirable features in image processing. However, the existing techniques that use the multilevel thresholding method in image segmentation are computationally demanding due to the lack of an automatic parameter selection process. This paper proposes an automatic parameter selection technique called an automatic multilevel thresholding algorithm using stratified sampling and Tabu Search (AMTSSTS) to remedy the limitations. It automatically determines the appropriate threshold number and values by (1) dividing an image into even strata (blocks) to extract samples; (2) applying a Tabu Search-based optimization technique on these samples to maximize the ratios of their means and variances; (3)preliminarily determining the threshold number and values based on the optimized samples; and (4) further optimizing these samples using a novel local criterion function that combines with the property of local continuity of an image. Experiments on Berkeley datasets show that AMTSSTS is an efficient and effective technique which can provide smoother results than several developed methods in recent years.
在图像分割中使用禁忌搜索自动选择参数
图像分割是图像处理中获取所需特征的过程。然而,由于缺乏自动参数选择过程,现有的使用多层阈值分割方法进行图像分割的技术计算量很大。本文提出了一种基于分层采样和禁忌搜索(AMTSSTS)的自动多水平阈值算法来弥补这一局限性。它通过(1)将图像分割成均匀的层(块)来提取样本,自动确定合适的阈值数和值;(2)对这些样本应用禁忌搜索优化技术,使其均值和方差的比值最大化;(3)根据优化后的样本初步确定阈值的个数和值;(4)利用结合图像局部连续性的局部判据函数对样本进行进一步优化。在Berkeley数据集上的实验表明,与近年来发展起来的几种方法相比,AMTSSTS技术可以提供更平滑的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信