New ant colony optimization for searching the minimum distance for linear codes

Hicham Bouzkraoui, Ahmed Azouaoui, Youssef Hadi
{"title":"New ant colony optimization for searching the minimum distance for linear codes","authors":"Hicham Bouzkraoui, Ahmed Azouaoui, Youssef Hadi","doi":"10.1109/COMMNET.2018.8360246","DOIUrl":null,"url":null,"abstract":"In coding theory, finding minimum distance remains one of the most open problems, actually it was proven to be an NP-hard type. Therefore classical algorithms become impracticable for large codes. Metaheuristic approaches come out to tackle this kind of problems by producing “good” solutions but eventually not the best at reasonable computational cost. In this paper we will attack this problem using Ant Colony Optimization (ACO), one of the successful swarm intelligence metaheuristic methods, derived from nature, especially the collective behavior of ants to find the best path to food, our implementation tested on linear codes then compared with previous works. The obtained results show an improvement in solution accuracy and computational cost.","PeriodicalId":103830,"journal":{"name":"2018 International Conference on Advanced Communication Technologies and Networking (CommNet)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Communication Technologies and Networking (CommNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMNET.2018.8360246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In coding theory, finding minimum distance remains one of the most open problems, actually it was proven to be an NP-hard type. Therefore classical algorithms become impracticable for large codes. Metaheuristic approaches come out to tackle this kind of problems by producing “good” solutions but eventually not the best at reasonable computational cost. In this paper we will attack this problem using Ant Colony Optimization (ACO), one of the successful swarm intelligence metaheuristic methods, derived from nature, especially the collective behavior of ants to find the best path to food, our implementation tested on linear codes then compared with previous works. The obtained results show an improvement in solution accuracy and computational cost.
线性码最小距离搜索的新蚁群算法
在编码理论中,寻找最小距离仍然是一个最开放的问题,实际上它被证明是一个NP-hard类型。因此,经典算法在大代码中变得不实用。元启发式方法通过产生“好的”解决方案来解决这类问题,但最终在合理的计算成本下不是最好的。在本文中,我们将使用蚁群优化(Ant Colony Optimization, ACO)来解决这个问题,这是一种成功的群体智能元启发式方法,它来源于自然界,特别是蚂蚁的集体行为来寻找食物的最佳路径,我们的实现在线性代码上进行了测试,然后与之前的工作进行了比较。结果表明,该方法提高了求解精度和计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信