{"title":"Point Cloud Object Segmentation Using Multi Elevation-Layer 2D Bounding-Boxes","authors":"Tristan Brodeur, H. Aliakbarpour, S. Suddarth","doi":"10.1109/ICCVW54120.2021.00438","DOIUrl":null,"url":null,"abstract":"Segmentation of point clouds is a necessary pre-processing technique when object discrimination is needed for scene understanding. In this paper, we propose a segmentation technique utilizing 2D bounding-box data obtained via the orthographic projection of 3D points onto a plane at multiple elevation layers. Connected components is utilized to obtain bounding-box data, and a consistency metric between bounding-boxes at various elevation layers helps determine the classification of the bounding-box to an object of the scene. The merging of point data within each 2D bounding-box results in an object-segmented point cloud. Our method conducts segmentation using only the topological information of the point data within a dataset, requiring no extra computation of normals, creation of an octree or k-d tree, nor a dependency on RGB or intensity data associated with a point. Initial experiments are run on a set of point cloud datasets obtained via photogrammetric means, as well as some open-source, LIDAR-generated point clouds, showing the method to be capture agnostic. Results demonstrate the efficacy of this method in obtaining a distinct set of objects contained within a point cloud.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Segmentation of point clouds is a necessary pre-processing technique when object discrimination is needed for scene understanding. In this paper, we propose a segmentation technique utilizing 2D bounding-box data obtained via the orthographic projection of 3D points onto a plane at multiple elevation layers. Connected components is utilized to obtain bounding-box data, and a consistency metric between bounding-boxes at various elevation layers helps determine the classification of the bounding-box to an object of the scene. The merging of point data within each 2D bounding-box results in an object-segmented point cloud. Our method conducts segmentation using only the topological information of the point data within a dataset, requiring no extra computation of normals, creation of an octree or k-d tree, nor a dependency on RGB or intensity data associated with a point. Initial experiments are run on a set of point cloud datasets obtained via photogrammetric means, as well as some open-source, LIDAR-generated point clouds, showing the method to be capture agnostic. Results demonstrate the efficacy of this method in obtaining a distinct set of objects contained within a point cloud.