A new supervised training algorithm for generalised learning

A. Bhaumik, S. Banerjee, J. Sil
{"title":"A new supervised training algorithm for generalised learning","authors":"A. Bhaumik, S. Banerjee, J. Sil","doi":"10.1109/ICCIMA.1999.798580","DOIUrl":null,"url":null,"abstract":"The paper proposes a new supervised training algorithm for feedforward neural networks. Instead of applying single valued input-output information, multivalued information in the form of a K-dimensional vector (K>1) is applied to each node of the input-output layer. Weights are adjusted using the gradient decent approximation method in order to minimise the sum-squared error value at each node of the output layer. The training algorithm has been studied for wide range of input-output values and gives worthy results especially when the output vector is small enough compared to the input vector. The paper suggests a judicious method for choosing the bias component of the sigmoidal activation function used in the training algorithm.","PeriodicalId":110736,"journal":{"name":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third International Conference on Computational Intelligence and Multimedia Applications. ICCIMA'99 (Cat. No.PR00300)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIMA.1999.798580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The paper proposes a new supervised training algorithm for feedforward neural networks. Instead of applying single valued input-output information, multivalued information in the form of a K-dimensional vector (K>1) is applied to each node of the input-output layer. Weights are adjusted using the gradient decent approximation method in order to minimise the sum-squared error value at each node of the output layer. The training algorithm has been studied for wide range of input-output values and gives worthy results especially when the output vector is small enough compared to the input vector. The paper suggests a judicious method for choosing the bias component of the sigmoidal activation function used in the training algorithm.
一种新的泛化学习监督训练算法
提出了一种新的前馈神经网络监督训练算法。将多值信息以K维向量(K>1)的形式应用于输入输出层的每个节点,而不是应用单值输入输出信息。使用梯度体面近似方法调整权重,以便最小化输出层每个节点的和平方误差值。该训练算法已经在大范围的输入输出值下进行了研究,特别是当输出向量相对于输入向量足够小时,得到了令人满意的结果。本文提出了一种明智的方法来选择训练算法中使用的s型激活函数的偏置分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信