Recursive estimation of generative models of video

Nemanja Petrović, A. Ivanovic, N. Jojic
{"title":"Recursive estimation of generative models of video","authors":"Nemanja Petrović, A. Ivanovic, N. Jojic","doi":"10.1109/CVPR.2006.248","DOIUrl":null,"url":null,"abstract":"In this paper we present a generative model and learning procedure for unsupervised video clustering into scenes. The work addresses two important problems: realistic modeling of the sources of variability in the video and fast transformation invariant frame clustering. We suggest a solution to the problem of computationally intensive learning in this model by combining the recursive model estimation, fast inference, and on-line learning. Thus, we achieve real time frame clustering performance. Novel aspects of this method include an algorithm for the clustering of Gaussian mixtures, and the fast computation of the KL divergence between two mixtures of Gaussians. The efficiency and the performance of clustering and KL approximation methods are demonstrated. We also present novel video browsing tool based on the visualization of the variables in the generative model.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper we present a generative model and learning procedure for unsupervised video clustering into scenes. The work addresses two important problems: realistic modeling of the sources of variability in the video and fast transformation invariant frame clustering. We suggest a solution to the problem of computationally intensive learning in this model by combining the recursive model estimation, fast inference, and on-line learning. Thus, we achieve real time frame clustering performance. Novel aspects of this method include an algorithm for the clustering of Gaussian mixtures, and the fast computation of the KL divergence between two mixtures of Gaussians. The efficiency and the performance of clustering and KL approximation methods are demonstrated. We also present novel video browsing tool based on the visualization of the variables in the generative model.
视频生成模型的递归估计
本文提出了一种无监督视频聚类的生成模型和学习过程。该工作解决了两个重要问题:视频中可变性源的逼真建模和快速变换不变帧聚类。我们提出了一种将递归模型估计、快速推理和在线学习相结合的方法来解决该模型中计算密集型学习的问题。因此,我们实现了实时帧聚类性能。该方法的新颖之处包括高斯混合聚类算法,以及两个高斯混合间KL散度的快速计算。证明了聚类和KL近似方法的效率和性能。我们还提出了一种新的基于生成模型中变量可视化的视频浏览工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信