Identification system of the type of vehicle

B. Daya, A. Akoum, P. Chauvet
{"title":"Identification system of the type of vehicle","authors":"B. Daya, A. Akoum, P. Chauvet","doi":"10.1109/BICTA.2010.5645260","DOIUrl":null,"url":null,"abstract":"The identification of objects is a difficult task because the objects of the real-world are highly variable in aspect, size, color, position in space, etc. The system of identification of object must thus have a very great adaptability. In this article we present a system of identification of the type (model) of vehicles per vision. Several geometrical parameters (distance, surface, ratio … ) of decision, on bases of images taken in real conditions, were tested and analyzed. According to these parameters, the rate of identification can reach 95% on a basis of images made up of 9 classes of the type of vehicles. The fusion of the three classifiers using the rate of identification for each parameter allows showing the effectiveness of our process for the identification of the type of vehicle.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The identification of objects is a difficult task because the objects of the real-world are highly variable in aspect, size, color, position in space, etc. The system of identification of object must thus have a very great adaptability. In this article we present a system of identification of the type (model) of vehicles per vision. Several geometrical parameters (distance, surface, ratio … ) of decision, on bases of images taken in real conditions, were tested and analyzed. According to these parameters, the rate of identification can reach 95% on a basis of images made up of 9 classes of the type of vehicles. The fusion of the three classifiers using the rate of identification for each parameter allows showing the effectiveness of our process for the identification of the type of vehicle.
车辆类型识别系统
物体的识别是一项困难的任务,因为现实世界中的物体在外观、大小、颜色、空间位置等方面都是高度可变的。因此,物体识别系统必须具有非常大的适应性。在这篇文章中,我们提出了一个系统的识别类型(模型)的车辆每视觉。根据实际条件下拍摄的图像,对判定的几个几何参数(距离、面、比等)进行了测试和分析。根据这些参数,在由9类车辆类型组成的图像的基础上,识别率可以达到95%。使用每个参数的识别率来融合三个分类器,可以显示我们识别车辆类型的过程的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信