Bias Removal Techniques for Component Pursuit

Yongjian Zhao, Bin Jiang
{"title":"Bias Removal Techniques for Component Pursuit","authors":"Yongjian Zhao, Bin Jiang","doi":"10.1109/icsgea.2018.00030","DOIUrl":null,"url":null,"abstract":"The component pursuit problem is introduced under blind environment when Gaussian noise is present. An improved quantitative measure of non-Gaussianity, called Gaussian moments, is deduced correspondingly. After analyzing the useful property of Gaussian moments, an objective function is presented which can be suitable in the noisy context. As a result, a one-unit algorithm is presented with bias removal for quasi-whitened data. Computer simulations illustrate the better performance of the proposed approach.","PeriodicalId":445324,"journal":{"name":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Smart Grid and Electrical Automation (ICSGEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icsgea.2018.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The component pursuit problem is introduced under blind environment when Gaussian noise is present. An improved quantitative measure of non-Gaussianity, called Gaussian moments, is deduced correspondingly. After analyzing the useful property of Gaussian moments, an objective function is presented which can be suitable in the noisy context. As a result, a one-unit algorithm is presented with bias removal for quasi-whitened data. Computer simulations illustrate the better performance of the proposed approach.
组件追踪中的偏差去除技术
介绍了存在高斯噪声的盲环境下的分量追踪问题。推导了一种改进的非高斯性的定量度量,称为高斯矩。在分析高斯矩有用性质的基础上,提出了一个适用于噪声环境的目标函数。因此,本文提出了一种准白化数据的单单元去偏算法。计算机仿真验证了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信