Automatic face emotion recognition system

Jiequan Li, M. Oussalah
{"title":"Automatic face emotion recognition system","authors":"Jiequan Li, M. Oussalah","doi":"10.1109/UKRICIS.2010.5898118","DOIUrl":null,"url":null,"abstract":"Facial expression recognition has been acknowledged as an active research topic in computer vision community. The challenges include the face identification and recognition, suitable data representation, appropriate classification scheme, appropriate database, among others. In this paper, a new approach for facial emotion recognition is investigated. The proposal involves the use of Haar transform and adaptive AdaBoost algorithm for face identification and Principal Component Analysis (PCA) in conjunction with minimum distance classifier for face recognition. Two approaches have been investigated for facial expression recognition. The former relies on the use of PCA and K-nearest neighbour (KNN) classification algorithm, while the latter advocates the use of Negative Matrix Factorization (NMF) and KNN algorithms. The proposal was tested and validated using Taiwanese and Indian face databases.","PeriodicalId":359942,"journal":{"name":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKRICIS.2010.5898118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Facial expression recognition has been acknowledged as an active research topic in computer vision community. The challenges include the face identification and recognition, suitable data representation, appropriate classification scheme, appropriate database, among others. In this paper, a new approach for facial emotion recognition is investigated. The proposal involves the use of Haar transform and adaptive AdaBoost algorithm for face identification and Principal Component Analysis (PCA) in conjunction with minimum distance classifier for face recognition. Two approaches have been investigated for facial expression recognition. The former relies on the use of PCA and K-nearest neighbour (KNN) classification algorithm, while the latter advocates the use of Negative Matrix Factorization (NMF) and KNN algorithms. The proposal was tested and validated using Taiwanese and Indian face databases.
自动人脸情感识别系统
面部表情识别是计算机视觉界公认的一个活跃的研究课题。面临的挑战包括人脸识别、合适的数据表示、合适的分类方案、合适的数据库等。本文研究了一种新的人脸情绪识别方法。该方案涉及使用Haar变换和自适应AdaBoost算法进行人脸识别,并结合最小距离分类器进行人脸识别。研究了两种面部表情识别方法。前者依赖于使用PCA和k近邻(KNN)分类算法,后者则主张使用负矩阵分解(NMF)和KNN算法。该建议使用台湾和印度的面部数据库进行了测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信