Towards Combining Structured Pattern Mining and Graph Kernels

Fabrizio Costa, Björn Bringmann
{"title":"Towards Combining Structured Pattern Mining and Graph Kernels","authors":"Fabrizio Costa, Björn Bringmann","doi":"10.1109/ICDMW.2008.125","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to feature construction for structured data in order to enhance graph prediction classification performance. To this end we combine graph mining techniques with graph kernel based classifiers. The main idea is to employ efficient mining techniques to extract a set of patterns correlated with the target concept and use these, or a selected subset of these, to annotate the original graph structures. A decomposition kernel is then defined on the enriched structured data instances. Experimental results on carcinogenic and toxicological activity prediction tasks for small molecules show that the proposed technique significantly increases classification performance.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel approach to feature construction for structured data in order to enhance graph prediction classification performance. To this end we combine graph mining techniques with graph kernel based classifiers. The main idea is to employ efficient mining techniques to extract a set of patterns correlated with the target concept and use these, or a selected subset of these, to annotate the original graph structures. A decomposition kernel is then defined on the enriched structured data instances. Experimental results on carcinogenic and toxicological activity prediction tasks for small molecules show that the proposed technique significantly increases classification performance.
结构化模式挖掘与图核结合的研究
本文提出了一种结构化数据特征构建的新方法,以提高图预测分类性能。为此,我们将图挖掘技术与基于图核的分类器相结合。其主要思想是采用有效的挖掘技术来提取与目标概念相关的一组模式,并使用这些模式或其中的一个选定子集来注释原始图结构。然后在丰富的结构化数据实例上定义分解内核。小分子致癌性和毒理学活性预测任务的实验结果表明,该方法显著提高了分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信