MSCAUNet-3D: Multiscale Spatial Channel Attention 3D-UNet for Lung Carcinoma Segmentation on CT Image

S. Poonkodi, M. Kanchana
{"title":"MSCAUNet-3D: Multiscale Spatial Channel Attention 3D-UNet for Lung Carcinoma Segmentation on CT Image","authors":"S. Poonkodi, M. Kanchana","doi":"10.1109/AICAPS57044.2023.10074322","DOIUrl":null,"url":null,"abstract":"The lung segmentation process plays a vital role in diagnosing lung carcinoma. Segmentation techniques segment the lung region and remove the borders, blood vessels, and void spaces in the CT images. For segmentation, segmenting the highlighted vital features and suppressing the unwanted features is important. In the paper, we proposed the new segmentation techniques combined with an attention mechanism to achieve accurate segmentation. In this model, we introduced the multiscale spatial and channel attention mechanism with the 3D-UNet model named MSCAUNet-3D. this model performs two stages: pre-processing and segmentation. In pre-processing, adaptive Histogram Equalization (AHE) and Gaussian Adaptive Bilateral Filter (GABF) are utilized for removing noise and enhancing the image. In segmentation, we introduce the MSCAUNet-3D for accurate segmentation. To evaluate this model, Dice Coefficient (DC), Jaccard Similarity Coefficient or Index (JI), and Relative Absolute Volume Difference (RAVD) performance measures are utilized. The proposed model yields 91.4, 90.4, and 89.4 in DC, JI, and RAVD, respectively, which shows that the proposed model outperforms the other models.","PeriodicalId":146698,"journal":{"name":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAPS57044.2023.10074322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The lung segmentation process plays a vital role in diagnosing lung carcinoma. Segmentation techniques segment the lung region and remove the borders, blood vessels, and void spaces in the CT images. For segmentation, segmenting the highlighted vital features and suppressing the unwanted features is important. In the paper, we proposed the new segmentation techniques combined with an attention mechanism to achieve accurate segmentation. In this model, we introduced the multiscale spatial and channel attention mechanism with the 3D-UNet model named MSCAUNet-3D. this model performs two stages: pre-processing and segmentation. In pre-processing, adaptive Histogram Equalization (AHE) and Gaussian Adaptive Bilateral Filter (GABF) are utilized for removing noise and enhancing the image. In segmentation, we introduce the MSCAUNet-3D for accurate segmentation. To evaluate this model, Dice Coefficient (DC), Jaccard Similarity Coefficient or Index (JI), and Relative Absolute Volume Difference (RAVD) performance measures are utilized. The proposed model yields 91.4, 90.4, and 89.4 in DC, JI, and RAVD, respectively, which shows that the proposed model outperforms the other models.
MSCAUNet-3D:用于肺癌CT图像分割的多尺度空间通道关注3D-UNet
肺分割过程在肺癌的诊断中起着至关重要的作用。分割技术对肺区域进行分割,去除CT图像中的边界、血管和空隙。对于分割,分割突出的重要特征和抑制不需要的特征是很重要的。在本文中,我们提出了新的分割技术,并结合注意机制来实现准确的分割。在该模型中,我们利用3D-UNet模型MSCAUNet-3D引入了多尺度空间和通道注意机制。该模型分为预处理和分割两个阶段。预处理采用自适应直方图均衡化(AHE)和高斯自适应双边滤波(GABF)去除噪声,增强图像。在分割方面,我们引入了MSCAUNet-3D进行精确分割。为了评估该模型,使用了骰子系数(DC)、Jaccard相似系数或指数(JI)和相对绝对体积差(RAVD)性能指标。本文提出的模型在DC、JI和RAVD上分别得到91.4、90.4和89.4,表明本文提出的模型优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信