Artificial neural network for ECG arryhthmia monitoring

Y. Hu, W. Tompkins, Q. Xue
{"title":"Artificial neural network for ECG arryhthmia monitoring","authors":"Y. Hu, W. Tompkins, Q. Xue","doi":"10.1109/NNSP.1992.253677","DOIUrl":null,"url":null,"abstract":"The application of a multilayer perceptron artificial neural network model (ANN) to detect the QRS complex in ECG (electrocardiography) signal processing is presented. The objective is to improve the heart beat detection rate in the presence of severe background noise. An adaptively tuned multilayer perceptron structure is used to model the nonlinear, time-varying background noise. The noise is removed by subtracting the predicted noise from the original signal. Preliminary experimental results indicate that the ANN based approach consistently outperforms the conventional bandpass filtering approach and the linear adaptive filtering approach. Such performance enhancement is most critical toward the development of a practical automated online ECG arrhythmia monitoring system.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The application of a multilayer perceptron artificial neural network model (ANN) to detect the QRS complex in ECG (electrocardiography) signal processing is presented. The objective is to improve the heart beat detection rate in the presence of severe background noise. An adaptively tuned multilayer perceptron structure is used to model the nonlinear, time-varying background noise. The noise is removed by subtracting the predicted noise from the original signal. Preliminary experimental results indicate that the ANN based approach consistently outperforms the conventional bandpass filtering approach and the linear adaptive filtering approach. Such performance enhancement is most critical toward the development of a practical automated online ECG arrhythmia monitoring system.<>
人工神经网络用于心电心律失常监测
提出了一种多层感知器人工神经网络模型(ANN)在心电图信号处理中的QRS复合体检测中的应用。目的是提高在严重背景噪声存在下的心跳检测率。采用自适应调谐多层感知器结构对非线性时变背景噪声进行建模。通过从原始信号中减去预测噪声来去除噪声。初步实验结果表明,基于人工神经网络的滤波方法优于传统的带通滤波方法和线性自适应滤波方法。这种性能的提高对于开发一种实用的自动在线心电心律失常监测系统至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信