A new method for query generation applied to learning text classifiers

L. Jimmy, Q. Mohamed
{"title":"A new method for query generation applied to learning text classifiers","authors":"L. Jimmy, Q. Mohamed","doi":"10.1109/WI.2003.1241284","DOIUrl":null,"url":null,"abstract":"We introduce a new method for query generation. This method uses only a logical approach and does not need a statistical process or a natural language processing. The main interest of this new method is the abstraction. We discuss a method for learning a text classifier and query generation for this classifier. The two problems are resolved in a complementary approach using our query generation method and SVM as text classifiers. We use this approach for studying words polysemy. Our method generates queries in order to retrieve documents about a specific sense of the word and in the same time learning the associated text classifier. Our method have good results.","PeriodicalId":403574,"journal":{"name":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2003.1241284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a new method for query generation. This method uses only a logical approach and does not need a statistical process or a natural language processing. The main interest of this new method is the abstraction. We discuss a method for learning a text classifier and query generation for this classifier. The two problems are resolved in a complementary approach using our query generation method and SVM as text classifiers. We use this approach for studying words polysemy. Our method generates queries in order to retrieve documents about a specific sense of the word and in the same time learning the associated text classifier. Our method have good results.
一种用于文本分类器学习的查询生成新方法
我们介绍了一种新的查询生成方法。该方法只使用逻辑方法,不需要统计过程或自然语言处理。这种新方法的主要特点是抽象。我们讨论了一种文本分类器的学习方法和该分类器的查询生成方法。使用我们的查询生成方法和SVM作为文本分类器,以一种互补的方式解决了这两个问题。我们用这种方法来学习单词的多义性。我们的方法生成查询,以便检索关于单词特定意义的文档,同时学习相关的文本分类器。我们的方法取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信