Multi-UAS Path-Planning for a Large-scale Disjoint Disaster Management

Younghoon Choi, Youngjun Choi, Simon Briceno, D. Mavris
{"title":"Multi-UAS Path-Planning for a Large-scale Disjoint Disaster Management","authors":"Younghoon Choi, Youngjun Choi, Simon Briceno, D. Mavris","doi":"10.1109/ICUAS.2019.8797950","DOIUrl":null,"url":null,"abstract":"A UAS-based disaster management method has been adopted to monitor the disaster impact and protect human lives since it can be rapidly deployed, execute an aerial imaging mission, and provide a cost-efficient operation. In the case of a wildfire disaster, a disaster management is highly complex because of large-scale wildfires that can occur simultaneously and disjointly in a large area. In order to effectively manage these large-scale wildfires, it requires multiple UAS with multiple ground stations. However, conventional UAS-based management methods relies on a single ground station that can have a limitation to handle the large-scale wildfire problem. This paper presents a new path-planning framework for UAS operations including a fleet of UAVs and multiple ground stations. The framework consists of two parts: creating coverage paths for each wildfire and optimizing routes for each UAV. To test the developed framework, this paper uses representative wildfire scenarios in the State of California.","PeriodicalId":426616,"journal":{"name":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2019.8797950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A UAS-based disaster management method has been adopted to monitor the disaster impact and protect human lives since it can be rapidly deployed, execute an aerial imaging mission, and provide a cost-efficient operation. In the case of a wildfire disaster, a disaster management is highly complex because of large-scale wildfires that can occur simultaneously and disjointly in a large area. In order to effectively manage these large-scale wildfires, it requires multiple UAS with multiple ground stations. However, conventional UAS-based management methods relies on a single ground station that can have a limitation to handle the large-scale wildfire problem. This paper presents a new path-planning framework for UAS operations including a fleet of UAVs and multiple ground stations. The framework consists of two parts: creating coverage paths for each wildfire and optimizing routes for each UAV. To test the developed framework, this paper uses representative wildfire scenarios in the State of California.
大规模离散灾害管理的多无人机路径规划
以无人机为基础的灾害管理方法可以快速部署,执行航空成像任务,并提供经济高效的操作,因此可以监测灾害影响并保护人员生命。在野火灾害的情况下,由于大规模野火可以同时发生,也可以在大面积内分散发生,因此灾害管理非常复杂。为了有效地管理这些大规模的野火,需要多个无人机和多个地面站。然而,传统的基于无人机的管理方法依赖于单个地面站,在处理大规模野火问题时可能存在局限性。本文提出了一种新的无人机作战路径规划框架,包括无人机编队和多个地面站。该框架由两部分组成:为每个野火创建覆盖路径和为每个无人机优化路线。为了测试开发的框架,本文使用了加利福尼亚州具有代表性的野火场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信