Fast Training of Self Organizing Maps for the Visual Exploration of Molecular Compounds

A. Fiannaca, G. D. Fatta, R. Rizzo, A. Urso, S. Gaglio
{"title":"Fast Training of Self Organizing Maps for the Visual Exploration of Molecular Compounds","authors":"A. Fiannaca, G. D. Fatta, R. Rizzo, A. Urso, S. Gaglio","doi":"10.1109/IJCNN.2007.4371399","DOIUrl":null,"url":null,"abstract":"Visual exploration of scientific data in life science area is a growing research field due to the large amount of available data. The Kohonen's self organizing map (SOM) is a widely used tool for visualization of multidimensional data. In this paper we present a fast learning algorithm for SOMs that uses a simulated annealing method to adapt the learning parameters. The algorithm has been adopted in a data analysis framework for the generation of similarity maps. Such maps provide an effective tool for the visual exploration of large and multi-dimensional input spaces. The approach has been applied to data generated during the high throughput screening of molecular compounds; the generated maps allow a visual exploration of molecules with similar topological properties. The experimental analysis on real world data from the National Cancer Institute shows the speed up of the proposed SOM training process in comparison to a traditional approach. The resulting visual landscape groups molecules with similar chemical properties in densely connected regions.","PeriodicalId":350091,"journal":{"name":"2007 International Joint Conference on Neural Networks","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2007.4371399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual exploration of scientific data in life science area is a growing research field due to the large amount of available data. The Kohonen's self organizing map (SOM) is a widely used tool for visualization of multidimensional data. In this paper we present a fast learning algorithm for SOMs that uses a simulated annealing method to adapt the learning parameters. The algorithm has been adopted in a data analysis framework for the generation of similarity maps. Such maps provide an effective tool for the visual exploration of large and multi-dimensional input spaces. The approach has been applied to data generated during the high throughput screening of molecular compounds; the generated maps allow a visual exploration of molecules with similar topological properties. The experimental analysis on real world data from the National Cancer Institute shows the speed up of the proposed SOM training process in comparison to a traditional approach. The resulting visual landscape groups molecules with similar chemical properties in densely connected regions.
用于分子化合物视觉探索的自组织图谱快速训练
在生命科学领域,科学数据的可视化探索是一个不断发展的研究领域,因为它具有大量的可用数据。Kohonen自组织图(SOM)是一种广泛使用的多维数据可视化工具。本文提出了一种基于模拟退火的SOMs快速学习算法。该算法已被应用于一个数据分析框架中,用于生成相似图。这种地图为大型和多维输入空间的视觉探索提供了有效的工具。该方法已应用于分子化合物高通量筛选过程中产生的数据;生成的地图允许对具有相似拓扑性质的分子进行视觉探索。对来自美国国家癌症研究所的真实世界数据的实验分析表明,与传统方法相比,提出的SOM培训过程的速度更快。由此产生的视觉景观将具有相似化学性质的分子聚集在紧密相连的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信