Mobile social media networks caching with convolutional neural network

Kuo Chun Tsai, Li Wang, Zhu Han
{"title":"Mobile social media networks caching with convolutional neural network","authors":"Kuo Chun Tsai, Li Wang, Zhu Han","doi":"10.1109/WCNCW.2018.8368988","DOIUrl":null,"url":null,"abstract":"Nowadays, people use mobile social media networks such as Twitter and Facebook to connect with others. In this work, we discuss the problem of context-aware data caching in the heterogeneous small cell networks (HSCNs) to reduce the service delay for the end users. In the data-caching model, there are three types of cache entities, which are edge caching elements (CAEs), small cell base stations (SBSs), and macro cell base stations (MBS). We propose a deep learning model using the convolutional neural network (CNN) to apply sentence analysis on the data and extract information content in the data from end users. We can predict the data that will most likely to be requested by the end users to reduce service latency by caching the data close to the end users by the interest of the end users. We shows the effectiveness of our proposed algorithm by comparing with other approaches in our simulation.","PeriodicalId":122391,"journal":{"name":"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNCW.2018.8368988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Nowadays, people use mobile social media networks such as Twitter and Facebook to connect with others. In this work, we discuss the problem of context-aware data caching in the heterogeneous small cell networks (HSCNs) to reduce the service delay for the end users. In the data-caching model, there are three types of cache entities, which are edge caching elements (CAEs), small cell base stations (SBSs), and macro cell base stations (MBS). We propose a deep learning model using the convolutional neural network (CNN) to apply sentence analysis on the data and extract information content in the data from end users. We can predict the data that will most likely to be requested by the end users to reduce service latency by caching the data close to the end users by the interest of the end users. We shows the effectiveness of our proposed algorithm by comparing with other approaches in our simulation.
移动社交媒体网络卷积神经网络缓存
如今,人们使用移动社交媒体网络,如Twitter和Facebook与他人联系。在这项工作中,我们讨论了异构小蜂窝网络(HSCNs)中上下文感知数据缓存的问题,以减少最终用户的服务延迟。在数据缓存模型中,有三种类型的缓存实体,它们是边缘缓存元素(cae)、小蜂窝基站(sbs)和宏蜂窝基站(MBS)。我们提出了一种使用卷积神经网络(CNN)对数据进行句子分析的深度学习模型,并从最终用户那里提取数据中的信息内容。我们可以预测最终用户最有可能请求的数据,从而根据最终用户的兴趣缓存靠近最终用户的数据,从而减少服务延迟。通过与其他方法的仿真比较,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信