Spectral analysis techniques for acoustic fingerprints recognition

E. Zurek, A. M. R. Gamarra, G. J. R. Escorcia, Carlos A. Gutiérrez, H. Bayona, R. Pérez, Xavier García
{"title":"Spectral analysis techniques for acoustic fingerprints recognition","authors":"E. Zurek, A. M. R. Gamarra, G. J. R. Escorcia, Carlos A. Gutiérrez, H. Bayona, R. Pérez, Xavier García","doi":"10.1109/STSIVA.2014.7010154","DOIUrl":null,"url":null,"abstract":"This article presents results of the recognition process of acoustic fingerprints from a noise source using spectral characteristics of the signal. Principal Components Analysis (PCA) is applied to reduce the dimensionality of extracted features and then a classifier is implemented using the method of the k-nearest neighbors (KNN) to identify the pattern of the audio signal. This classifier is compared with an Artificial Neural Network (ANN) implementation. It is necessary to implement a filtering system to the acquired signals for 60Hz noise reduction generated by imperfections in the acquisition system. The methods described in this paper were used for vessel recognition.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This article presents results of the recognition process of acoustic fingerprints from a noise source using spectral characteristics of the signal. Principal Components Analysis (PCA) is applied to reduce the dimensionality of extracted features and then a classifier is implemented using the method of the k-nearest neighbors (KNN) to identify the pattern of the audio signal. This classifier is compared with an Artificial Neural Network (ANN) implementation. It is necessary to implement a filtering system to the acquired signals for 60Hz noise reduction generated by imperfections in the acquisition system. The methods described in this paper were used for vessel recognition.
声学指纹识别的频谱分析技术
本文介绍了利用噪声信号的频谱特征对噪声源的声指纹进行识别的结果。利用主成分分析(PCA)对提取的特征进行降维,然后利用k近邻(KNN)方法实现分类器来识别音频信号的模式。将该分类器与人工神经网络(ANN)的实现进行了比较。有必要对采集信号实施滤波系统,以降低采集系统中缺陷产生的60Hz噪声。将本文所描述的方法用于船舶识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信