The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness

D. Romero, F. Zertuche
{"title":"The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness","authors":"D. Romero, F. Zertuche","doi":"10.1063/1.2768747","DOIUrl":null,"url":null,"abstract":"We determine the average number $ \\vartheta (N, K) $, of \\textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for $ N \\gg 1 $, there exists a connectivity critical value $ K_c $ such that $ \\vartheta(N,K) \\approx e^{\\phi N} $ ($ \\phi > 0 $) for $ K K_c $. We find that $ K_c $ is not a constant, but scales very slowly with $ N $, as $ K_c \\approx \\log_2 \\log_2 (2N / \\ln 2) $. The problem of genetic robustness emerges as a statistical property of the ensemble of \\textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.2768747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We determine the average number $ \vartheta (N, K) $, of \textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for $ N \gg 1 $, there exists a connectivity critical value $ K_c $ such that $ \vartheta(N,K) \approx e^{\phi N} $ ($ \phi > 0 $) for $ K K_c $. We find that $ K_c $ is not a constant, but scales very slowly with $ N $, as $ K_c \approx \log_2 \log_2 (2N / \ln 2) $. The problem of genetic robustness emerges as a statistical property of the ensemble of \textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.
NK-Kauffman网络生成的不同二值函数的数量与遗传鲁棒性的出现
我们确定了产生相同二元函数的\textit{NK-Kauffman}网络的平均值$ \vartheta (N, K) $。我们表明,对于$ N \gg 1 $,存在一个连接临界值$ K_c $,使得$ K K_c $的$ \vartheta(N,K) \approx e^{\phi N} $ ($ \phi > 0 $)。我们发现$ K_c $不是一个常数,但随着$ N $的变化,它的变化非常缓慢,如$ K_c \approx \log_2 \log_2 (2N / \ln 2) $。遗传稳健性问题作为\textit{NK-}Kauffman网络集合的统计特性而出现,并对基因型-表型图谱中可以具有的遗传相互作用的平均数量施加了严格的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信