Fast multilinear Singular Value Decomposition for higher-order Hankel tensors

Maxime Boizard, R. Boyer, G. Favier, P. Larzabal
{"title":"Fast multilinear Singular Value Decomposition for higher-order Hankel tensors","authors":"Maxime Boizard, R. Boyer, G. Favier, P. Larzabal","doi":"10.1109/SAM.2014.6882436","DOIUrl":null,"url":null,"abstract":"The Higher-Order Singular Value Decomposition (HOSVD) is a possible generalization of the Singular Value Decomposition (SVD) to tensors, which have been successfully applied in various domains. Unfortunately, this decomposition is computationally demanding. Indeed, the HOSVD of a Nth-order tensor involves the computation of the SVD of N matrices. Previous works have shown that it is possible to reduce the complexity of HOSVD for third-order structured tensors. These methods exploit the columns redundancy, which is present in the mode of structured tensors, especially in Hankel tensors. In this paper, we propose to extend these results to fourth order Hankel tensor. We propose two ways to extend Hankel structure to fourth order tensors. For these two types of tensors, a method to build a reordered mode is proposed, which highlights the column redundancy and we derive a fast algorithm to compute their HOSVD. Finally we show the benefit of our algorithms in terms of complexity.","PeriodicalId":141678,"journal":{"name":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2014.6882436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Higher-Order Singular Value Decomposition (HOSVD) is a possible generalization of the Singular Value Decomposition (SVD) to tensors, which have been successfully applied in various domains. Unfortunately, this decomposition is computationally demanding. Indeed, the HOSVD of a Nth-order tensor involves the computation of the SVD of N matrices. Previous works have shown that it is possible to reduce the complexity of HOSVD for third-order structured tensors. These methods exploit the columns redundancy, which is present in the mode of structured tensors, especially in Hankel tensors. In this paper, we propose to extend these results to fourth order Hankel tensor. We propose two ways to extend Hankel structure to fourth order tensors. For these two types of tensors, a method to build a reordered mode is proposed, which highlights the column redundancy and we derive a fast algorithm to compute their HOSVD. Finally we show the benefit of our algorithms in terms of complexity.
高阶Hankel张量的快速多线性奇异值分解
高阶奇异值分解(HOSVD)是奇异值分解(SVD)对张量的一种可能推广,已成功应用于各个领域。不幸的是,这种分解在计算上要求很高。实际上,N阶张量的HOSVD涉及到N个矩阵的SVD的计算。先前的研究表明,对于三阶结构张量,降低HOSVD的复杂度是可能的。这些方法利用了结构张量模式,特别是汉克尔张量模式中存在的列冗余。在本文中,我们将这些结果推广到四阶汉克尔张量。我们提出了两种将汉克尔结构扩展到四阶张量的方法。针对这两种类型的张量,提出了一种建立重排序模式的方法,该方法突出了列冗余性,并推导了一种快速计算它们的HOSVD的算法。最后,我们展示了算法在复杂性方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信