Security: The Dark Side of Approximate Computing?

F. Regazzoni, C. Alippi, I. Polian
{"title":"Security: The Dark Side of Approximate Computing?","authors":"F. Regazzoni, C. Alippi, I. Polian","doi":"10.1145/3240765.3243497","DOIUrl":null,"url":null,"abstract":"Approximate computing promises significant advantages over more traditional computing architectures with respect to circuit area, performance, power efficiency, flexibility, and cost. Its use is suitable in applications where limited and controlled inaccuracies are tolerable or uncertainty is intrinsic in input or their data processing, e.g., as it happens in (deep-) machine learning, image and signal processing. This paper discusses a dimension of approximate computing that has been neglected so far, despite it represents nowadays a major asset, that of security. A number of hardware-related security threats are considered, and the implications of approximate circuits or systems designed to address these threats are discussed.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3243497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Approximate computing promises significant advantages over more traditional computing architectures with respect to circuit area, performance, power efficiency, flexibility, and cost. Its use is suitable in applications where limited and controlled inaccuracies are tolerable or uncertainty is intrinsic in input or their data processing, e.g., as it happens in (deep-) machine learning, image and signal processing. This paper discusses a dimension of approximate computing that has been neglected so far, despite it represents nowadays a major asset, that of security. A number of hardware-related security threats are considered, and the implications of approximate circuits or systems designed to address these threats are discussed.
安全性:近似计算的阴暗面?
与传统的计算架构相比,近似计算在电路面积、性能、能效、灵活性和成本方面具有显著优势。它的使用适用于有限和可控的不准确性是可以容忍的,或者输入或数据处理中固有的不确定性,例如,在(深度)机器学习、图像和信号处理中发生的情况。本文讨论了迄今为止被忽视的近似计算的一个维度,尽管它代表了当今的主要资产,即安全性。考虑了许多与硬件相关的安全威胁,并讨论了为解决这些威胁而设计的近似电路或系统的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信