Performance of MPEG-7 edge histogram descriptor in face recognition using Principal Component Analysis

Shafin Rahman, S. M. Naim, Abdullah Al Farooq, M. Islam
{"title":"Performance of MPEG-7 edge histogram descriptor in face recognition using Principal Component Analysis","authors":"Shafin Rahman, S. M. Naim, Abdullah Al Farooq, M. Islam","doi":"10.1109/ICCITECHN.2010.5723904","DOIUrl":null,"url":null,"abstract":"Face recognition is considered as a high dimensionality problem. To handle high dimensionality, a numerous methods have been proposed in literature. In this paper, we propose a novel face recognition method that efficiently solves that problem using MPEG-7 edge histogram descriptor. To the authors' knowledge, this is the first attempt to use edge histogram descriptor in face recognition. Although MPEG-7 standard represents only local edge histogram we use global and semi-global edge histogram also. We find that local edge histogram mostly helpful for face recognition. We test our system not only using the entire face image as input but also dividing the image into different sub-divisions. PCA is then applied to the edge histogram descriptors of sub-divisions in-stead of raw pixel intensity values of images which traditional methods do. Since we use normalized edge histogram, our face recognition method becomes scale, translation and rotation invariant. Furthermore, our proposed method does not necessarily require all images to be of same resolution as input. We evaluate the proposed method using ORL, Yale and Face94 face databases and achieve superior performance.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Face recognition is considered as a high dimensionality problem. To handle high dimensionality, a numerous methods have been proposed in literature. In this paper, we propose a novel face recognition method that efficiently solves that problem using MPEG-7 edge histogram descriptor. To the authors' knowledge, this is the first attempt to use edge histogram descriptor in face recognition. Although MPEG-7 standard represents only local edge histogram we use global and semi-global edge histogram also. We find that local edge histogram mostly helpful for face recognition. We test our system not only using the entire face image as input but also dividing the image into different sub-divisions. PCA is then applied to the edge histogram descriptors of sub-divisions in-stead of raw pixel intensity values of images which traditional methods do. Since we use normalized edge histogram, our face recognition method becomes scale, translation and rotation invariant. Furthermore, our proposed method does not necessarily require all images to be of same resolution as input. We evaluate the proposed method using ORL, Yale and Face94 face databases and achieve superior performance.
基于主成分分析的MPEG-7边缘直方图描述子在人脸识别中的性能
人脸识别被认为是一个高维问题。为了处理高维数,文献中提出了许多方法。本文提出了一种新的人脸识别方法,利用MPEG-7边缘直方图描述符有效地解决了这一问题。据作者所知,这是第一次尝试在人脸识别中使用边缘直方图描述符。虽然MPEG-7标准只表示局部边缘直方图,但我们也使用全局和半全局边缘直方图。我们发现局部边缘直方图对人脸识别有很大帮助。我们不仅使用整个人脸图像作为输入,而且还将图像划分为不同的细分。然后将PCA应用于细分的边缘直方图描述符,而不是传统方法所做的图像的原始像素强度值。由于采用了归一化边缘直方图,使得人脸识别方法具有尺度、平移和旋转的不变性。此外,我们提出的方法并不一定要求所有图像都具有与输入相同的分辨率。我们使用ORL、Yale和Face94人脸数据库对该方法进行了评估,并取得了优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信