Functional Itô Calculus

Bruno Dupire
{"title":"Functional Itô Calculus","authors":"Bruno Dupire","doi":"10.2139/SSRN.1435551","DOIUrl":null,"url":null,"abstract":"Ito calculus deals with functions of the current state whilst we deal with functions of the current path to acknowledge the fact that often the impact of randomness is cumulative. We express the differential of the functional in terms of adequately defined partial derivatives to obtain an Ito formula. We develop an extension of the Feynman-Kac formula to the functional case and an explicit expression of the integrand in the Martingale Representation Theorem, providing an alternative to the Clark-Ocone formula from Malliavin Calculus. We establish that under certain conditions, even path dependent options prices satisfy a partial differential equation in a local sense.","PeriodicalId":253842,"journal":{"name":"Bloomberg: Frontiers (Topic)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"257","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bloomberg: Frontiers (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.1435551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 257

Abstract

Ito calculus deals with functions of the current state whilst we deal with functions of the current path to acknowledge the fact that often the impact of randomness is cumulative. We express the differential of the functional in terms of adequately defined partial derivatives to obtain an Ito formula. We develop an extension of the Feynman-Kac formula to the functional case and an explicit expression of the integrand in the Martingale Representation Theorem, providing an alternative to the Clark-Ocone formula from Malliavin Calculus. We establish that under certain conditions, even path dependent options prices satisfy a partial differential equation in a local sense.
功能Itô微积分
伊藤微积分处理的是当前状态的函数,而我们处理的是当前路径的函数,以承认随机性的影响通常是累积的。我们用充分定义的偏导数来表示泛函的微分,从而得到伊藤公式。我们将Feynman-Kac公式推广到泛函情况,并在鞅表示定理中给出了被积函数的显式表达式,为Malliavin微积分中的Clark-Ocone公式提供了一种替代方法。证明了在一定条件下,偶路径相关期权价格在局部意义上满足偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信