Multichannel Nonnegative Matrix Factorization With Motor Data-Regularized Activations For Robust Ego-Noise Suppression

Alexander Schmidt, Walter Kellermann
{"title":"Multichannel Nonnegative Matrix Factorization With Motor Data-Regularized Activations For Robust Ego-Noise Suppression","authors":"Alexander Schmidt, Walter Kellermann","doi":"10.1109/ICAS49788.2021.9551193","DOIUrl":null,"url":null,"abstract":"The suppression of ego-noise is often addressed using dictionary-based methods where the characteristic spectral structure of ego-noise is approximated by a linear combination of dictionary entries. A blind, entirely audio data-based selection of the dictionary entries is, however, challenging and reacts sensitive against other signals besides ego-noise in a mixture. For a more robust behavior, we propose a motor data-dependent regularization term which promotes similar activations for similar physical states of the robot. The proposed regularization term is added to a multichannel nonnegative matrix factorization (MNMF)-based signal model and according update rules are derived. We analyze the proposed method for a challenging ego-noise scenario and demonstrate the efficacy of the method compared to an approach for which no motor data is used.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The suppression of ego-noise is often addressed using dictionary-based methods where the characteristic spectral structure of ego-noise is approximated by a linear combination of dictionary entries. A blind, entirely audio data-based selection of the dictionary entries is, however, challenging and reacts sensitive against other signals besides ego-noise in a mixture. For a more robust behavior, we propose a motor data-dependent regularization term which promotes similar activations for similar physical states of the robot. The proposed regularization term is added to a multichannel nonnegative matrix factorization (MNMF)-based signal model and according update rules are derived. We analyze the proposed method for a challenging ego-noise scenario and demonstrate the efficacy of the method compared to an approach for which no motor data is used.
基于电机数据正则化激活的多通道非负矩阵分解鲁棒自我噪声抑制
自我噪声的抑制通常使用基于字典的方法来解决,其中自我噪声的特征谱结构由字典条目的线性组合近似。然而,盲目的、完全基于音频数据的词典条目选择是具有挑战性的,并且对混合中的自我噪声之外的其他信号反应敏感。为了获得更强的鲁棒性,我们提出了一个与电机数据相关的正则化项,该项促进了机器人在相似物理状态下的相似激活。将提出的正则化项加入到基于多通道非负矩阵分解(MNMF)的信号模型中,并推导出相应的更新规则。我们针对具有挑战性的自我噪声场景分析了所提出的方法,并与不使用运动数据的方法相比,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信