Security enhancement with nodal criticality based integration of PHEV micro grids

D. Jayaweera, S. Islam
{"title":"Security enhancement with nodal criticality based integration of PHEV micro grids","authors":"D. Jayaweera, S. Islam","doi":"10.1109/AUPEC.2013.6725365","DOIUrl":null,"url":null,"abstract":"Modern distribution networks are increasingly vulnerable to disturbances and improving the security of supply to customers are complex and challenging with the traditional approach. This paper presents a new approach to enhance the security of power supply in an active distribution network by integrating PHEV (Plug-in Hybrid Electric Vehicle) based micro grids on the basis of the nodal criticality. The nodal criticality is assessed by integrating operational uncertainties of events into samples of Monte Carlo simulation and classifying load interruptions on the basis of their magnitudes and frequencies. Criticality of the system stress that results nodal loads shedding is classified into arrays of clusters based on the magnitudes of interrupted loads at samples. The critical clusters that represent largest disturbances to the respective nodal loads are served with PHEV micro grids. Case studies are performed, and the results suggest that the security of distribution networks can be significantly improved with the proposed approach.","PeriodicalId":121040,"journal":{"name":"2013 Australasian Universities Power Engineering Conference (AUPEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australasian Universities Power Engineering Conference (AUPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUPEC.2013.6725365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modern distribution networks are increasingly vulnerable to disturbances and improving the security of supply to customers are complex and challenging with the traditional approach. This paper presents a new approach to enhance the security of power supply in an active distribution network by integrating PHEV (Plug-in Hybrid Electric Vehicle) based micro grids on the basis of the nodal criticality. The nodal criticality is assessed by integrating operational uncertainties of events into samples of Monte Carlo simulation and classifying load interruptions on the basis of their magnitudes and frequencies. Criticality of the system stress that results nodal loads shedding is classified into arrays of clusters based on the magnitudes of interrupted loads at samples. The critical clusters that represent largest disturbances to the respective nodal loads are served with PHEV micro grids. Case studies are performed, and the results suggest that the security of distribution networks can be significantly improved with the proposed approach.
基于节点临界的插电式混合动力微电网集成安全性增强
现代配电网络越来越容易受到干扰,提高客户供应的安全性与传统的方法是复杂的和具有挑战性的。本文在节点临界的基础上,提出了一种通过集成插电式混合动力汽车微电网来提高有源配电网供电安全性的新方法。通过将事件的运行不确定性整合到蒙特卡罗模拟的样本中,并根据其大小和频率对负载中断进行分类,从而评估节点临界性。根据中断负荷的大小,将导致节点负荷脱落的系统应力临界程度划分为簇阵列。对各自节点负载干扰最大的关键集群采用插电式混合动力微电网供电。实例研究表明,采用该方法可以显著提高配电网的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信