Hierarchical probabilistic task recognition based on spatial memory for care support

Tappei Katsunaga, Takayuki Tanaka, M. Niitsuma, Saburo Takahashi, T. Abe
{"title":"Hierarchical probabilistic task recognition based on spatial memory for care support","authors":"Tappei Katsunaga, Takayuki Tanaka, M. Niitsuma, Saburo Takahashi, T. Abe","doi":"10.1109/IEEECONF49454.2021.9382681","DOIUrl":null,"url":null,"abstract":"We propose a method for recognizing tasks performed by care workers. Time-series sample data for each feature amount during tasks are defined as a task history, which is used as a basis for creating spatiotemporal task information in reference to Niitsuma’s spatial memory. We perform simulated care tasks in an environment that recreates an actual care site, and measure time-series data of worker feature amounts by a motion capture system. We divide this data into learning and evaluation data, and verify the recognition accuracy. Recognition accuracy for seven defined elemental tasks is close to 80% on average, demonstrating the effectiveness of this method.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"64 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a method for recognizing tasks performed by care workers. Time-series sample data for each feature amount during tasks are defined as a task history, which is used as a basis for creating spatiotemporal task information in reference to Niitsuma’s spatial memory. We perform simulated care tasks in an environment that recreates an actual care site, and measure time-series data of worker feature amounts by a motion capture system. We divide this data into learning and evaluation data, and verify the recognition accuracy. Recognition accuracy for seven defined elemental tasks is close to 80% on average, demonstrating the effectiveness of this method.
基于空间记忆的护理支持分层概率任务识别
我们提出了一种方法来识别由护理人员执行的任务。任务过程中每个特征量的时间序列样本数据被定义为任务历史,作为参考Niitsuma空间记忆创建时空任务信息的基础。我们在一个重建实际护理场所的环境中执行模拟护理任务,并通过动作捕捉系统测量工作人员特征量的时间序列数据。我们将这些数据分为学习数据和评价数据,并验证了识别的准确性。对定义的7个基本任务的识别准确率平均接近80%,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信