GPU-accelerated Adaptively Sampled Distance Fields

Thiago Bastos, Waldemar Celes Filho
{"title":"GPU-accelerated Adaptively Sampled Distance Fields","authors":"Thiago Bastos, Waldemar Celes Filho","doi":"10.1109/SMI.2008.4547967","DOIUrl":null,"url":null,"abstract":"Adaptively Sampled Distance Fields (ADFs) are volumetric shape representations that support a broad range of applications in the areas of computer graphics, computer vision and physics. ADFs are especially beneficial for representing shapes with features at very diverse scales. In this paper, we propose a strategy to represent and reconstruct ADFs on modern graphics hardware (GPUs). We employ a 3D hashing scheme to store the underlying data structure and try to balance the tradeoff between memory requirements and reconstruction efficiency. To render ADFs on GPU, we use a general-purpose ray-casting technique based on sphere tracing, which guarantees the reconstruction of fine details. We also present a way to overcome the Cl discontinuities inherent to ADFs and efficiently reconstruct smooth surface normals across cell boundaries. The effectiveness of our proposal is demonstrated for isosurface rendering and morphing.","PeriodicalId":118774,"journal":{"name":"2008 IEEE International Conference on Shape Modeling and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2008.4547967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Adaptively Sampled Distance Fields (ADFs) are volumetric shape representations that support a broad range of applications in the areas of computer graphics, computer vision and physics. ADFs are especially beneficial for representing shapes with features at very diverse scales. In this paper, we propose a strategy to represent and reconstruct ADFs on modern graphics hardware (GPUs). We employ a 3D hashing scheme to store the underlying data structure and try to balance the tradeoff between memory requirements and reconstruction efficiency. To render ADFs on GPU, we use a general-purpose ray-casting technique based on sphere tracing, which guarantees the reconstruction of fine details. We also present a way to overcome the Cl discontinuities inherent to ADFs and efficiently reconstruct smooth surface normals across cell boundaries. The effectiveness of our proposal is demonstrated for isosurface rendering and morphing.
gpu加速自适应采样距离场
自适应采样距离场(adf)是体积形状表示,支持计算机图形学,计算机视觉和物理领域的广泛应用。adf在表示具有非常不同尺度的特征的形状时特别有用。在本文中,我们提出了一种在现代图形硬件(gpu)上表示和重建adf的策略。我们采用3D散列方案来存储底层数据结构,并尝试在内存需求和重构效率之间取得平衡。为了在GPU上渲染adf,我们使用了一种基于球体追踪的通用光线投射技术,保证了精细细节的重建。我们还提出了一种克服adf固有的Cl不连续的方法,并有效地重建跨越细胞边界的光滑表面法线。在等值面的绘制和变形中证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信