Joseph Kotlarek, Oh-Hyun Kwon, K. Ma, P. Eades, A. Kerren, Karsten Klein, F. Schreiber
{"title":"A Study of Mental Maps in Immersive Network Visualization","authors":"Joseph Kotlarek, Oh-Hyun Kwon, K. Ma, P. Eades, A. Kerren, Karsten Klein, F. Schreiber","doi":"10.1109/PacificVis48177.2020.4722","DOIUrl":null,"url":null,"abstract":"The visualization of a network influences the quality of the mental map that the viewer develops to understand the network. In this study, we investigate the effects of a 3D immersive visualization environment compared to a traditional 2D desktop environment on the comprehension of a network’s structure. We compare the two visualization environments using three tasks—interpreting network structure, memorizing a set of nodes, and identifying the structural changes—commonly used for evaluating the quality of a mental map in network visualization. The results show that participants were able to interpret network structure more accurately when viewing the network in an immersive environment, particularly for larger networks. However, we found that 2D visualizations performed better than immersive visualization for tasks that required spatial memory.","PeriodicalId":322092,"journal":{"name":"2020 IEEE Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis48177.2020.4722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
The visualization of a network influences the quality of the mental map that the viewer develops to understand the network. In this study, we investigate the effects of a 3D immersive visualization environment compared to a traditional 2D desktop environment on the comprehension of a network’s structure. We compare the two visualization environments using three tasks—interpreting network structure, memorizing a set of nodes, and identifying the structural changes—commonly used for evaluating the quality of a mental map in network visualization. The results show that participants were able to interpret network structure more accurately when viewing the network in an immersive environment, particularly for larger networks. However, we found that 2D visualizations performed better than immersive visualization for tasks that required spatial memory.