Deep Learning Approach using Satellite Imagery Data for Poverty Analysis in Banten, Indonesia

Kasiful Aprianto, Arie Wahyu Wijayanto, S. Pramana
{"title":"Deep Learning Approach using Satellite Imagery Data for Poverty Analysis in Banten, Indonesia","authors":"Kasiful Aprianto, Arie Wahyu Wijayanto, S. Pramana","doi":"10.1109/CyberneticsCom55287.2022.9865480","DOIUrl":null,"url":null,"abstract":"Satellite imageries data provides abundant geospatial features of infrastructures, land uses, land covers, and economic activity footprints that are potential for domainspecific tasks. In this study, we investigate the use of satellite imageries data as spatial-based proxy indicators in predicting the percentage of poverty in Banten Province, Indonesia using a deep learning approach. The poverty dataset is taken from the Village Potential Data Survey (PODES) 2018 results published by Statistics Indonesia (BPS) as the assumed ground-truth labels. Our finding reveals a correlation between the night-time light satellite imagery and the percentage of poverty, hence the regression model to predict the percentage of poverty is constructed using convolutional neural networks (CNN) architecture. The correlation between night-time image data and the percentage of poverty in each village is negative 52 percent under log transformation. Our proposed model generates a promising root mean squared error (RMSE) of 5.3023 which is potentially beneficial to support the construction and monitoring of poverty statistics in Indonesia.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Satellite imageries data provides abundant geospatial features of infrastructures, land uses, land covers, and economic activity footprints that are potential for domainspecific tasks. In this study, we investigate the use of satellite imageries data as spatial-based proxy indicators in predicting the percentage of poverty in Banten Province, Indonesia using a deep learning approach. The poverty dataset is taken from the Village Potential Data Survey (PODES) 2018 results published by Statistics Indonesia (BPS) as the assumed ground-truth labels. Our finding reveals a correlation between the night-time light satellite imagery and the percentage of poverty, hence the regression model to predict the percentage of poverty is constructed using convolutional neural networks (CNN) architecture. The correlation between night-time image data and the percentage of poverty in each village is negative 52 percent under log transformation. Our proposed model generates a promising root mean squared error (RMSE) of 5.3023 which is potentially beneficial to support the construction and monitoring of poverty statistics in Indonesia.
使用卫星图像数据的深度学习方法用于印度尼西亚万丹的贫困分析
卫星图像数据提供了丰富的基础设施、土地利用、土地覆盖和经济活动足迹的地理空间特征,这些特征可能用于特定领域的任务。在这项研究中,我们研究了使用卫星图像数据作为基于空间的代理指标,使用深度学习方法预测印度尼西亚万丹省的贫困比例。贫困数据集取自印度尼西亚统计局(BPS)发布的2018年村庄潜力数据调查(PODES)结果,作为假设的基本事实标签。我们的发现揭示了夜间照明卫星图像与贫困比例之间的相关性,因此使用卷积神经网络(CNN)架构构建了预测贫困比例的回归模型。在对数变换下,夜间图像数据与每个村庄的贫困率之间的相关性为负52%。我们提出的模型产生了一个有希望的均方根误差(RMSE)为5.3023,这可能有利于支持印度尼西亚贫困统计数据的构建和监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信