Multi-level clustering for extracting process-related information from email logs

Diana Jlailaty, Daniela Grigori, Khalid Belhajjame
{"title":"Multi-level clustering for extracting process-related information from email logs","authors":"Diana Jlailaty, Daniela Grigori, Khalid Belhajjame","doi":"10.1109/RCIS.2017.7956583","DOIUrl":null,"url":null,"abstract":"Emails represent a valuable source of information that can be harvested for understanding undocumented business processes of institutions. Towards this aim, a few researchers investigated the problem of extracting process oriented information from email logs to make benefit of the many available process mining techniques. In this work, we go further in this direction, by proposing a new method for mining process models from email logs that leverages unsupervised machine learning techniques. Moreover, our method allows to label emails with activity names, that can be used for activity recognition in new incoming emails. A use case illustrates the usefulness of the proposed solution.","PeriodicalId":193156,"journal":{"name":"2017 11th International Conference on Research Challenges in Information Science (RCIS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 11th International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2017.7956583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Emails represent a valuable source of information that can be harvested for understanding undocumented business processes of institutions. Towards this aim, a few researchers investigated the problem of extracting process oriented information from email logs to make benefit of the many available process mining techniques. In this work, we go further in this direction, by proposing a new method for mining process models from email logs that leverages unsupervised machine learning techniques. Moreover, our method allows to label emails with activity names, that can be used for activity recognition in new incoming emails. A use case illustrates the usefulness of the proposed solution.
用于从邮件日志中提取流程相关信息的多级聚类
电子邮件是一种有价值的信息来源,可以用来理解机构中未记录的业务流程。为了实现这一目标,一些研究人员研究了从电子邮件日志中提取面向过程的信息的问题,以利用许多可用的过程挖掘技术。在这项工作中,我们在这个方向上更进一步,提出了一种利用无监督机器学习技术从电子邮件日志中挖掘过程模型的新方法。此外,我们的方法允许用活动名称标记电子邮件,这可以用于在新传入的电子邮件中进行活动识别。用例说明建议的解决方案的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信