An Evaluation of Human Detection Methods on Camera Images in Heavy Industry Environments

Nico Zengeler, M. Grimm, C. Borgmann, M. Jansen, S. Eimler, U. Handmann
{"title":"An Evaluation of Human Detection Methods on Camera Images in Heavy Industry Environments","authors":"Nico Zengeler, M. Grimm, C. Borgmann, M. Jansen, S. Eimler, U. Handmann","doi":"10.1109/ICIEA.2019.8834060","DOIUrl":null,"url":null,"abstract":"In this paper we evaluate different machine learning models for human body detection in heavy industry environments. Contributing a framework to asses the reliability of a detection system in industrial environments, we compare techniques of feature extraction for support vector machines to artificial neural networks. To accommodate for common environmental challenges in heavy industry, such as dust, difficult light conditions and partially covered persons, we apply programmatic changes to our test image set and evaluate the accuracy of person detection, foot point estimation and the tendency of erroneous detections.","PeriodicalId":311302,"journal":{"name":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2019.8834060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we evaluate different machine learning models for human body detection in heavy industry environments. Contributing a framework to asses the reliability of a detection system in industrial environments, we compare techniques of feature extraction for support vector machines to artificial neural networks. To accommodate for common environmental challenges in heavy industry, such as dust, difficult light conditions and partially covered persons, we apply programmatic changes to our test image set and evaluate the accuracy of person detection, foot point estimation and the tendency of erroneous detections.
重工业环境下摄像机图像的人体检测方法评价
在本文中,我们评估了用于重工业环境中人体检测的不同机器学习模型。我们提供了一个框架来评估工业环境中检测系统的可靠性,将支持向量机的特征提取技术与人工神经网络进行了比较。为了适应重工业中常见的环境挑战,例如灰尘,困难的光照条件和部分被覆盖的人员,我们对测试图像集应用程序化更改,并评估人员检测的准确性,脚点估计和错误检测的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信