Yunfeng Zhu, P. Lee, Yuchong Hu, Liping Xiang, Yinlong Xu
{"title":"On the speedup of single-disk failure recovery in XOR-coded storage systems: Theory and practice","authors":"Yunfeng Zhu, P. Lee, Yuchong Hu, Liping Xiang, Yinlong Xu","doi":"10.1109/MSST.2012.6232371","DOIUrl":null,"url":null,"abstract":"Modern storage systems stripe redundant data across multiple disks to provide availability guarantees against disk failures. One form of data redundancy is based on XOR-based erasure codes, which use only XOR operations for encoding and decoding. In addition to providing failure tolerance, a storage system must also provide fast failure recovery to avoid data unavailability. We consider the problem of speeding up the recovery of a single-disk failure for arbitrary XOR-based erasure codes. We address this problem from both theoretical and practical perspectives. We propose a replace recovery algorithm, which uses a hill-climbing technique to search for a fast recovery solution, such that the solution search can be completed within a short time period. We further implement our replace recovery algorithm atop a parallelized architecture to justify its practicality. We experiment our replace recovery algorithm and its parallelized implementation on a networked storage system testbed, and demonstrate that our replace recovery algorithm uses less recovery time than the conventional approach.","PeriodicalId":348234,"journal":{"name":"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2012.6232371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
Modern storage systems stripe redundant data across multiple disks to provide availability guarantees against disk failures. One form of data redundancy is based on XOR-based erasure codes, which use only XOR operations for encoding and decoding. In addition to providing failure tolerance, a storage system must also provide fast failure recovery to avoid data unavailability. We consider the problem of speeding up the recovery of a single-disk failure for arbitrary XOR-based erasure codes. We address this problem from both theoretical and practical perspectives. We propose a replace recovery algorithm, which uses a hill-climbing technique to search for a fast recovery solution, such that the solution search can be completed within a short time period. We further implement our replace recovery algorithm atop a parallelized architecture to justify its practicality. We experiment our replace recovery algorithm and its parallelized implementation on a networked storage system testbed, and demonstrate that our replace recovery algorithm uses less recovery time than the conventional approach.