Komparasi Penggunaan Matriks Kebalikan Leontief & Ghosian Untuk Peramalan Dalam Model Input Output

Budi Kurniawan, Susiawati Kristiarini
{"title":"Komparasi Penggunaan Matriks Kebalikan Leontief & Ghosian Untuk Peramalan Dalam Model Input Output","authors":"Budi Kurniawan, Susiawati Kristiarini","doi":"10.33369/diophantine.v1i1.25703","DOIUrl":null,"url":null,"abstract":"This study is an empirical study that compares the use of two types of inverse matrices in the input output model. The Input Output (IO) model is based on a system of mathematical equations that applies general equilibrium phenomena. The matrix operating system in the equation derived from the IO model allows the Output value (X) to be calculated as an effect of the final demand induction (F) with the formulation X=(I-A)-1F where A is the technical coefficient matrix. This equation model uses the Leontief Inverse Matrix to calculate the impact of output with final demand (F) as a stimulant. Calculation of the impact of the stimulus from the supply side such as added value and the value of intermediate inputs originating from imports (V) uses the Ghosian Inverse Matrix in the equation X=(I-AT)-1V where AT is the usage coefficient matrix. The data used in this study comes from the Bengkulu Province Input Output Tables in 2000 and 2016, each of which has been collected in a common set to see comparability between years of observation. Forecasting results with both types of approaches produce different levels of accuracy for each observation period.","PeriodicalId":330009,"journal":{"name":"Diophantine Journal of Mathematics and Its Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diophantine Journal of Mathematics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33369/diophantine.v1i1.25703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study is an empirical study that compares the use of two types of inverse matrices in the input output model. The Input Output (IO) model is based on a system of mathematical equations that applies general equilibrium phenomena. The matrix operating system in the equation derived from the IO model allows the Output value (X) to be calculated as an effect of the final demand induction (F) with the formulation X=(I-A)-1F where A is the technical coefficient matrix. This equation model uses the Leontief Inverse Matrix to calculate the impact of output with final demand (F) as a stimulant. Calculation of the impact of the stimulus from the supply side such as added value and the value of intermediate inputs originating from imports (V) uses the Ghosian Inverse Matrix in the equation X=(I-AT)-1V where AT is the usage coefficient matrix. The data used in this study comes from the Bengkulu Province Input Output Tables in 2000 and 2016, each of which has been collected in a common set to see comparability between years of observation. Forecasting results with both types of approaches produce different levels of accuracy for each observation period.
本研究是一项实证研究,比较了两种类型的逆矩阵在输入输出模型中的使用。输入输出(IO)模型是基于应用一般均衡现象的数学方程系统。从IO模型导出的方程中的矩阵操作系统允许将输出值(X)计算为最终需求诱导(F)的影响,公式为X=(I-A)-1F,其中A为技术系数矩阵。该方程模型使用Leontief逆矩阵来计算最终需求(F)作为刺激物时产出的影响。计算供给侧刺激的影响,如附加值和源自进口(V)的中间投入的价值,使用方程X=(I-AT)-1V中的Ghosian逆矩阵,其中AT是使用系数矩阵。本研究中使用的数据来自2000年和2016年的明古鲁省投入产出表,每个表都收集在一个共同的集合中,以观察年份之间的可比性。两种方法的预测结果在每个观测期间产生不同程度的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信