Volume Rendering Using Principal Component Analysis

Salaheddin Alakkari, J. Dingliana
{"title":"Volume Rendering Using Principal Component Analysis","authors":"Salaheddin Alakkari, J. Dingliana","doi":"10.2312/eurp.20161148","DOIUrl":null,"url":null,"abstract":"We investigate the use of Principal Component Analysis (PCA) for image-based volume rendering. We compute an eigenspace using training images, pre-rendered using a standard raycaster, from a spherically distributed range of camera positions. Our system is then able to synthesize novel views of the data set with minimal computation at run time. Results indicate that PCA is able to sufficiently learn the full volumetric model through a finite number of training images and generalizer of training images and generalize the computed eigenspace to produce high quality novel view images.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/eurp.20161148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate the use of Principal Component Analysis (PCA) for image-based volume rendering. We compute an eigenspace using training images, pre-rendered using a standard raycaster, from a spherically distributed range of camera positions. Our system is then able to synthesize novel views of the data set with minimal computation at run time. Results indicate that PCA is able to sufficiently learn the full volumetric model through a finite number of training images and generalizer of training images and generalize the computed eigenspace to produce high quality novel view images.
使用主成分分析的体绘制
我们研究了主成分分析(PCA)在基于图像的体绘制中的应用。我们使用训练图像计算特征空间,使用标准光线投射器从相机位置的球形分布范围预渲染。然后,我们的系统能够在运行时以最小的计算量合成数据集的新视图。结果表明,PCA能够通过有限数量的训练图像和训练图像的泛化器充分学习完整的体积模型,并对计算的特征空间进行泛化,从而产生高质量的新视图图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信