Application of hierarchical clustering ordered partitioning and collapsing hybrid in Ebola Virus phylogenetic analysis

Hengki Muradi, A. Bustamam, D. Lestari
{"title":"Application of hierarchical clustering ordered partitioning and collapsing hybrid in Ebola Virus phylogenetic analysis","authors":"Hengki Muradi, A. Bustamam, D. Lestari","doi":"10.1109/ICACSIS.2015.7415183","DOIUrl":null,"url":null,"abstract":"Gene clustering can be achieved through hierarchical or partition method. Both clustering methods can be combined by processing the partition and hierarchical phases alternately. This method is known as a hierarchical clustering ordered partitioning and collapsing hybrid (HOPACH) method. The Partitioning phase can be done by using PAM, SOM, or K-Means methods. The partition process is continued with the ordered process, and then it is corrected with agglomerative process, in order to have more accurate clustering results. Furthermore, the main clusters are determined by using MSS (Median Split Silhouette) value. We selected the clustering results which minimize the MSS value. In this work, we conduct the clustering on 136 Ebola Virus DNA sequences data from GenBank. The global alignment process is initially performed, followed by genetic distance calculation using Jukes-Cantor correction. In our implementation, we applied global alignment process and used the combination of HOPACH-PAM clustering using the R open source programming tool. In our results, we obtained maximum genetic distance is 0.6153407; meanwhile the minimum genetic distance is 0. Furthermore, genetic distance matrix can be used as a basis for sequences clustering and phylogenetic analysis. In our HOPACH-PAM clustering results, we obtained 10 main clusters with MSS value is 0.8873843. Ebola virus clusters can be identified by species and virus epidemic year.","PeriodicalId":325539,"journal":{"name":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2015.7415183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Gene clustering can be achieved through hierarchical or partition method. Both clustering methods can be combined by processing the partition and hierarchical phases alternately. This method is known as a hierarchical clustering ordered partitioning and collapsing hybrid (HOPACH) method. The Partitioning phase can be done by using PAM, SOM, or K-Means methods. The partition process is continued with the ordered process, and then it is corrected with agglomerative process, in order to have more accurate clustering results. Furthermore, the main clusters are determined by using MSS (Median Split Silhouette) value. We selected the clustering results which minimize the MSS value. In this work, we conduct the clustering on 136 Ebola Virus DNA sequences data from GenBank. The global alignment process is initially performed, followed by genetic distance calculation using Jukes-Cantor correction. In our implementation, we applied global alignment process and used the combination of HOPACH-PAM clustering using the R open source programming tool. In our results, we obtained maximum genetic distance is 0.6153407; meanwhile the minimum genetic distance is 0. Furthermore, genetic distance matrix can be used as a basis for sequences clustering and phylogenetic analysis. In our HOPACH-PAM clustering results, we obtained 10 main clusters with MSS value is 0.8873843. Ebola virus clusters can be identified by species and virus epidemic year.
层次聚类、有序划分和崩溃杂交在埃博拉病毒系统发育分析中的应用
基因聚类可以通过分层或划分的方法来实现。通过交替处理分割阶段和分层阶段,可以将两种聚类方法结合起来。这种方法被称为分层聚类有序分区和折叠混合(HOPACH)方法。分区阶段可以通过使用PAM、SOM或K-Means方法来完成。将分割过程用有序过程进行延续,再用聚类过程进行修正,以获得更准确的聚类结果。此外,使用MSS (Median Split Silhouette)值确定主聚类。我们选择最小MSS值的聚类结果。在这项工作中,我们对来自GenBank的136个埃博拉病毒DNA序列数据进行了聚类。首先执行全局比对过程,然后使用Jukes-Cantor校正进行遗传距离计算。在我们的实现中,我们应用了全局对齐过程,并使用R开源编程工具使用了HOPACH-PAM集群的组合。结果表明,最大遗传距离为0.6153407;最小遗传距离为0。遗传距离矩阵可作为序列聚类和系统发育分析的基础。在我们的HOPACH-PAM聚类结果中,我们得到了10个MSS值为0.8873843的主聚类。埃博拉病毒群可按病毒种类和流行年份进行识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信