Joint Optimization of Image Registration and Comparametric Exposure Compensation Based on the Lucas-Kanade Algorithm

Dong Sik Kim, Su Yeon Lee, Kiryung Lee
{"title":"Joint Optimization of Image Registration and Comparametric Exposure Compensation Based on the Lucas-Kanade Algorithm","authors":"Dong Sik Kim, Su Yeon Lee, Kiryung Lee","doi":"10.1109/ICPR.2006.735","DOIUrl":null,"url":null,"abstract":"An iterative registration algorithm, the Lucas-Kanade algorithm, is combined with an exposure compensation algorithm to jointly optimize the spatial registration and the exposure compensation. The coordinate descent method is employed to minimize a mean squared error between image pairs. Based on a simple regression model, a non-parametric estimator, the empirical conditional mean and its polynomial fitting are used as histogram transformation functions for the exposure compensation. The proposed algorithm performs a good registration for real perspective and microscopic images, and can easily adopt other exposure compensation approaches and variations of the Lucas-Kanade algorithms due to its implicit flexibility","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An iterative registration algorithm, the Lucas-Kanade algorithm, is combined with an exposure compensation algorithm to jointly optimize the spatial registration and the exposure compensation. The coordinate descent method is employed to minimize a mean squared error between image pairs. Based on a simple regression model, a non-parametric estimator, the empirical conditional mean and its polynomial fitting are used as histogram transformation functions for the exposure compensation. The proposed algorithm performs a good registration for real perspective and microscopic images, and can easily adopt other exposure compensation approaches and variations of the Lucas-Kanade algorithms due to its implicit flexibility
基于Lucas-Kanade算法的图像配准与比较参数曝光补偿联合优化
将迭代配准算法Lucas-Kanade算法与曝光补偿算法相结合,共同优化空间配准和曝光补偿。采用坐标下降法最小化图像对之间的均方误差。在简单回归模型的基础上,采用非参数估计量、经验条件均值及其多项式拟合作为直方图变换函数进行曝光补偿。该算法对真实视角和微观图像的配准效果良好,并且由于其隐含的灵活性,可以很容易地采用其他曝光补偿方法和Lucas-Kanade算法的变体
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信