Background/Foreground Separation: Guided Attention based Adversarial Modeling (GAAM) versus Robust Subspace Learning Methods

M. Sultana, Arif Mahmood, T. Bouwmans, M. H. Khan, Soon Ki Jung
{"title":"Background/Foreground Separation: Guided Attention based Adversarial Modeling (GAAM) versus Robust Subspace Learning Methods","authors":"M. Sultana, Arif Mahmood, T. Bouwmans, M. H. Khan, Soon Ki Jung","doi":"10.1109/ICCVW54120.2021.00025","DOIUrl":null,"url":null,"abstract":"Background-Foreground separation and appearance generation is a fundamental step in many computer vision applications. Existing methods like Robust Subspace Learning (RSL) suffer performance degradation in the presence of challenges like bad weather, illumination variations, occlusion, dynamic backgrounds and intermittent object motion. In the current work we propose a more accurate deep neural network based model for background-foreground separation and complete appearance generation of the foreground objects. Our proposed model, Guided Attention based Adversarial Model (GAAM), can efficiently extract pixel-level boundaries of the foreground objects for improved appearance generation. Unlike RSL methods our model extracts the binary information of foreground objects labeled as attention map which guides our generator network to segment the foreground objects from the complex background information. Wide range of experiments performed on the benchmark CDnet2014 dataset demonstrate the excellent performance of our proposed model.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background-Foreground separation and appearance generation is a fundamental step in many computer vision applications. Existing methods like Robust Subspace Learning (RSL) suffer performance degradation in the presence of challenges like bad weather, illumination variations, occlusion, dynamic backgrounds and intermittent object motion. In the current work we propose a more accurate deep neural network based model for background-foreground separation and complete appearance generation of the foreground objects. Our proposed model, Guided Attention based Adversarial Model (GAAM), can efficiently extract pixel-level boundaries of the foreground objects for improved appearance generation. Unlike RSL methods our model extracts the binary information of foreground objects labeled as attention map which guides our generator network to segment the foreground objects from the complex background information. Wide range of experiments performed on the benchmark CDnet2014 dataset demonstrate the excellent performance of our proposed model.
背景/前景分离:基于引导注意的对抗建模(GAAM)与鲁棒子空间学习方法
背景前景分离和外观生成是许多计算机视觉应用的基本步骤。现有的方法,如鲁棒子空间学习(RSL),在恶劣天气、光照变化、遮挡、动态背景和间歇性物体运动等挑战下,性能会下降。在目前的工作中,我们提出了一个更精确的基于深度神经网络的背景前景分离模型和前景对象的完整外观生成。我们提出的基于引导注意力的对抗模型(GAAM)可以有效地提取前景物体的像素级边界,以改进外观生成。与RSL方法不同,我们的模型提取标记为注意图的前景对象的二进制信息,引导我们的生成器网络从复杂的背景信息中分割前景对象。在基准CDnet2014数据集上进行的大量实验证明了我们提出的模型的优异性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信