Clustering RDF data using K-medoids

Seham A. Bamatraf, Rasha A. BinThalab
{"title":"Clustering RDF data using K-medoids","authors":"Seham A. Bamatraf, Rasha A. BinThalab","doi":"10.1109/ICOICE48418.2019.9035160","DOIUrl":null,"url":null,"abstract":"Semantic web is a knowledge graph formed around semantic languages to enable computers and software to understand contents on the web. The content is explicitly annotated with semantic metadata using Resource Description Framework (RDF) language. However, the main issue is how to efficiently retrieve the RDF data taking into account a wide variety semantic and syntax nature and large-scale of such data. This paper aims to introduce a novel mechanism based on K-medoids algorithm for narrowing down the contents of the Web to clusters pertaining subset of information. We integrated sequence alignment algorithms with linguistic similarity measures to build a distance matrix which is used later in K-medoids clustering algorithm. The experimental outcomes showed a promised result for accuracy and quality of clustering.","PeriodicalId":109414,"journal":{"name":"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICE48418.2019.9035160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic web is a knowledge graph formed around semantic languages to enable computers and software to understand contents on the web. The content is explicitly annotated with semantic metadata using Resource Description Framework (RDF) language. However, the main issue is how to efficiently retrieve the RDF data taking into account a wide variety semantic and syntax nature and large-scale of such data. This paper aims to introduce a novel mechanism based on K-medoids algorithm for narrowing down the contents of the Web to clusters pertaining subset of information. We integrated sequence alignment algorithms with linguistic similarity measures to build a distance matrix which is used later in K-medoids clustering algorithm. The experimental outcomes showed a promised result for accuracy and quality of clustering.
使用k - medioids聚类RDF数据
语义网是围绕语义语言形成的知识图谱,使计算机和软件能够理解网络上的内容。使用资源描述框架(RDF)语言显式地用语义元数据对内容进行注释。然而,主要的问题是如何有效地检索RDF数据,同时考虑到各种各样的语义和语法性质以及此类数据的大规模。本文旨在介绍一种基于K-medoids算法的机制,用于将Web内容缩小到属于信息子集的聚类。我们将序列比对算法与语言相似性度量相结合,建立了一个距离矩阵,该矩阵在K-medoids聚类算法中得到了应用。实验结果表明,该方法在聚类精度和聚类质量方面取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信