A novel illumination normalization algorithm for face recognition

Housam Khalifa Bashier, L. S. Hoe, Pang Ying Han, L. Ping
{"title":"A novel illumination normalization algorithm for face recognition","authors":"Housam Khalifa Bashier, L. S. Hoe, Pang Ying Han, L. Ping","doi":"10.1109/ICSIPA.2013.6708040","DOIUrl":null,"url":null,"abstract":"Face recognitions systems suffer from the problem associated with illumination variation. Therefore, there's a need to address this problem. In this paper, we present a novel algorithm for illumination normalization call Local Trapezoid Feature LTF. The features are derived from the trapezoid rule and the experiments results on extended Yale face database demonstrated the effectiveness and the superiority of the algorithm. Furthermore, our algorithm doesn't require dimensionality reduction or feature extraction.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Face recognitions systems suffer from the problem associated with illumination variation. Therefore, there's a need to address this problem. In this paper, we present a novel algorithm for illumination normalization call Local Trapezoid Feature LTF. The features are derived from the trapezoid rule and the experiments results on extended Yale face database demonstrated the effectiveness and the superiority of the algorithm. Furthermore, our algorithm doesn't require dimensionality reduction or feature extraction.
一种新的人脸识别照度归一化算法
人脸识别系统受到光照变化的困扰。因此,有必要解决这个问题。本文提出了一种新的照明归一化算法——局部梯形特征LTF。根据梯形规则导出特征,在扩展的耶鲁人脸数据库上的实验结果证明了该算法的有效性和优越性。此外,我们的算法不需要降维或特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信