Learning When to Quit: An Empirical Model of Experimentation

Bernhard Ganglmair, Timothy S. Simcoe, E. Tarantino
{"title":"Learning When to Quit: An Empirical Model of Experimentation","authors":"Bernhard Ganglmair, Timothy S. Simcoe, E. Tarantino","doi":"10.3386/W24358","DOIUrl":null,"url":null,"abstract":"The paper studies a dynamic model of the decision to continue or abandon a research project. Researchers improve their ideas over time and also learn whether those ideas will be adopted by the scientific community. Projects are abandoned as researchers grow more pessimistic about their chance of success. It estimates the structural parameters of this dynamic decision problem using a novel data set that contains information on both successful and abandoned projects submitted to the Internet Engineering Task Force (IETF), an organization that creates and maintains internet standards. Using the model and parameter estimates, it also simulates two counterfactual policies: a cost-subsidy and a prize-based incentive scheme. For a fixed budget, subsidies have a larger impact on research output, but prizes perform better when accounting for researchers’ opportunity costs.","PeriodicalId":325993,"journal":{"name":"Ewing Marion Kauffman Foundation Research Paper Series","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ewing Marion Kauffman Foundation Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3386/W24358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper studies a dynamic model of the decision to continue or abandon a research project. Researchers improve their ideas over time and also learn whether those ideas will be adopted by the scientific community. Projects are abandoned as researchers grow more pessimistic about their chance of success. It estimates the structural parameters of this dynamic decision problem using a novel data set that contains information on both successful and abandoned projects submitted to the Internet Engineering Task Force (IETF), an organization that creates and maintains internet standards. Using the model and parameter estimates, it also simulates two counterfactual policies: a cost-subsidy and a prize-based incentive scheme. For a fixed budget, subsidies have a larger impact on research output, but prizes perform better when accounting for researchers’ opportunity costs.
学习何时放弃:实验的经验模型
本文研究了一个研究项目继续或放弃决策的动态模型。随着时间的推移,研究人员会改进他们的想法,并了解这些想法是否会被科学界采用。随着研究人员对成功的可能性越来越悲观,一些项目被放弃。它使用一个新的数据集来估计这个动态决策问题的结构参数,该数据集包含提交给互联网工程任务组(IETF)的成功和放弃的项目的信息,IETF是一个创建和维护互联网标准的组织。利用模型和参数估计,它还模拟了两种反事实政策:成本补贴和基于奖励的激励方案。对于固定预算,补贴对研究产出的影响更大,但当考虑到研究人员的机会成本时,奖励表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信