Modification of the Kalman Filter with Residual Separation and Localization

Il’mir R. Gogorev, Grigorij V. Belsky
{"title":"Modification of the Kalman Filter with Residual Separation and Localization","authors":"Il’mir R. Gogorev, Grigorij V. Belsky","doi":"10.1109/scm55405.2022.9794847","DOIUrl":null,"url":null,"abstract":"A modification of the Kalman filter with residual separation and localization is proposed, which makes it possible to develop an estimate of the measured and restored variables affected by noise under conditions of inaccurately known noise intensities and parametric uncertainty of the plant model. The results of mathematical modeling are presented, demonstrating the advantages of the proposed modification over the classical approach to constructing a Kalman filter.","PeriodicalId":162457,"journal":{"name":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scm55405.2022.9794847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A modification of the Kalman filter with residual separation and localization is proposed, which makes it possible to develop an estimate of the measured and restored variables affected by noise under conditions of inaccurately known noise intensities and parametric uncertainty of the plant model. The results of mathematical modeling are presented, demonstrating the advantages of the proposed modification over the classical approach to constructing a Kalman filter.
基于残差分离和局部化的卡尔曼滤波改进
提出了一种基于残差分离和局部化的卡尔曼滤波改进方法,使得在不准确地知道噪声强度和植物模型参数不确定的情况下,对受噪声影响的测量和恢复变量进行估计成为可能。给出了数学建模的结果,证明了所提出的改进方法相对于构造卡尔曼滤波器的经典方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信