A named entity recognition framework using transformers to identify relevant clinical findings from mammographic radiological reports

Eduardo Godoy, S. Chabert, Marvin Querales, J. Sotelo, Denis Parra, Carlos Fernández, Diego Mellado, A. Veloz, Scarlett Lever, Favian Pardo, Ayleen Bertini, Y. Molina, Claudia. C. Díaz, Rodrigo Ferreira, Rodrigo Salas
{"title":"A named entity recognition framework using transformers to identify relevant clinical findings from mammographic radiological reports","authors":"Eduardo Godoy, S. Chabert, Marvin Querales, J. Sotelo, Denis Parra, Carlos Fernández, Diego Mellado, A. Veloz, Scarlett Lever, Favian Pardo, Ayleen Bertini, Y. Molina, Claudia. C. Díaz, Rodrigo Ferreira, Rodrigo Salas","doi":"10.1117/12.2670228","DOIUrl":null,"url":null,"abstract":"Detecting and extracting findings in a radiological report is crucial for text mining tasks in several applications. In this case, a labeled process for the image associated with the radiological report in mammography and Spanish context for a computer vision model is required. This paper shows the methodology and process generated for this goal. This paper presents a Named Entity Recognition (NER) approach based on a transformer deep learning model, using a labeled corpus and fine-tuning process to find three concepts that compose a typical finding in a mammographic radiological report: laterality, location, and the finding. We add another concept in the labeled process, the negation, necessary to identify falses positive inside the text that writes the radiologist. Our model achieves an F1 score of 88.24% classifying the three principal concepts for a finding, product of the labeled and fine-tuning process. The results presented here will be used as input for future training work on a computer vision model.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2670228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting and extracting findings in a radiological report is crucial for text mining tasks in several applications. In this case, a labeled process for the image associated with the radiological report in mammography and Spanish context for a computer vision model is required. This paper shows the methodology and process generated for this goal. This paper presents a Named Entity Recognition (NER) approach based on a transformer deep learning model, using a labeled corpus and fine-tuning process to find three concepts that compose a typical finding in a mammographic radiological report: laterality, location, and the finding. We add another concept in the labeled process, the negation, necessary to identify falses positive inside the text that writes the radiologist. Our model achieves an F1 score of 88.24% classifying the three principal concepts for a finding, product of the labeled and fine-tuning process. The results presented here will be used as input for future training work on a computer vision model.
一个命名实体识别框架,使用变压器从乳房x线摄影放射报告中识别相关临床发现
在一些应用程序中,检测和提取放射报告中的发现对于文本挖掘任务至关重要。在这种情况下,需要对与乳房x线照相术中的放射学报告和计算机视觉模型的西班牙上下文相关的图像进行标记处理。本文展示了为实现这一目标而产生的方法和过程。本文提出了一种基于变形深度学习模型的命名实体识别(NER)方法,使用标记语料库和微调过程来找到构成乳房x线摄影放射报告中典型发现的三个概念:侧边性、位置和发现。我们在标记过程中增加了另一个概念,否定,这是在写放射科医生的文本中识别假阳性所必需的。我们的模型对发现、标记产品和微调过程的三个主要概念进行分类,获得了88.24%的F1分数。这里给出的结果将被用作未来计算机视觉模型训练工作的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信