Interpretable Fuzzy Models from Data and Adaptive Fuzzy Control: A New Approach

J. Montes, R.M. Llorca, L. Fernandez
{"title":"Interpretable Fuzzy Models from Data and Adaptive Fuzzy Control: A New Approach","authors":"J. Montes, R.M. Llorca, L. Fernandez","doi":"10.1109/FUZZY.2007.4295604","DOIUrl":null,"url":null,"abstract":"A novel approach for the development of linguistically interpretable fuzzy models from data is proposed. Based on this approach a methodology for inverse and indirect adaptive fuzzy control is presented. The proposed methodology includes clustering techniques to determine rules, the minimum squares method to adjust consequents and, for a sharp tuning, the descendant gradient to adjust the modal values of sets that confirm the antecedent. The antecedent partition uses triangular sets with 0.5 interpolations. The most promissory aspect in our proposal consists in achieving a great precision without sacrificing the fuzzy system interpretability. The real-world applicability of the proposed approach is demonstrated by application to a classic benchmark in system modeling and identification (Box-Jenkins gas furnace) and to a temperature control of a food process.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A novel approach for the development of linguistically interpretable fuzzy models from data is proposed. Based on this approach a methodology for inverse and indirect adaptive fuzzy control is presented. The proposed methodology includes clustering techniques to determine rules, the minimum squares method to adjust consequents and, for a sharp tuning, the descendant gradient to adjust the modal values of sets that confirm the antecedent. The antecedent partition uses triangular sets with 0.5 interpolations. The most promissory aspect in our proposal consists in achieving a great precision without sacrificing the fuzzy system interpretability. The real-world applicability of the proposed approach is demonstrated by application to a classic benchmark in system modeling and identification (Box-Jenkins gas furnace) and to a temperature control of a food process.
基于数据的可解释模糊模型与自适应模糊控制:一种新方法
提出了一种从数据中开发语言可解释模糊模型的新方法。在此基础上,提出了一种逆和间接自适应模糊控制方法。提出的方法包括聚类技术来确定规则,最小二乘法来调整结果,对于一个尖锐的调整,后代梯度来调整确认先决条件的集合的模态值。先行划分使用三角形集合,插值次数为0.5。在我们的建议中,最有希望的方面是在不牺牲模糊系统可解释性的情况下实现很高的精度。通过应用于系统建模和识别的经典基准(Box-Jenkins煤气炉)以及食品过程的温度控制,证明了所提出方法的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信