CBML

Jiayu Song, Jiajie Xu, Rui Zhou, Lu Chen, Jianxin Li, Chengfei Liu
{"title":"CBML","authors":"Jiayu Song, Jiajie Xu, Rui Zhou, Lu Chen, Jianxin Li, Chengfei Liu","doi":"10.1145/3459637.3482239","DOIUrl":null,"url":null,"abstract":"Session-based recommendation is to predict an anonymous user's next action based on the user's historical actions in the current session. However, the cold-start problem of limited number of actions at the beginning of an anonymous session makes it difficult to model the user's behavior, i.e., hard to capture the user's various and dynamic preferences within the session. This severely affects the accuracy of session-based recommendation. Although some existing meta-learning based approaches have alleviated the cold-start problem by borrowing preferences from other users, they are still weak in modeling the behavior of the current user. To tackle the challenge, we propose a novel cluster-based meta-learning model for session-based recommendation. Specially, we adopt a soft-clustering method and design a parameter gate to better transfer shared knowledge across similar sessions and preserve the characteristics of the session itself. Besides, we apply two self-attention blocks to capture the transition patterns of sessions in both item and feature aspects. Finally, comprehensive experiments are conducted on two real-world datasets and demonstrate the superior performance of CBML over existing approaches.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Session-based recommendation is to predict an anonymous user's next action based on the user's historical actions in the current session. However, the cold-start problem of limited number of actions at the beginning of an anonymous session makes it difficult to model the user's behavior, i.e., hard to capture the user's various and dynamic preferences within the session. This severely affects the accuracy of session-based recommendation. Although some existing meta-learning based approaches have alleviated the cold-start problem by borrowing preferences from other users, they are still weak in modeling the behavior of the current user. To tackle the challenge, we propose a novel cluster-based meta-learning model for session-based recommendation. Specially, we adopt a soft-clustering method and design a parameter gate to better transfer shared knowledge across similar sessions and preserve the characteristics of the session itself. Besides, we apply two self-attention blocks to capture the transition patterns of sessions in both item and feature aspects. Finally, comprehensive experiments are conducted on two real-world datasets and demonstrate the superior performance of CBML over existing approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信