{"title":"A Normalizing Flow-Based Co-Embedding Model for Attributed Networks","authors":"Shangsong Liang, Zhuo Ouyang, Zaiqiao Meng","doi":"10.1145/3477049","DOIUrl":null,"url":null,"abstract":"Network embedding is a technique that aims at inferring the low-dimensional representations of nodes in a semantic space. In this article, we study the problem of inferring the low-dimensional representations of both nodes and attributes for attributed networks in the same semantic space such that the affinity between a node and an attribute can be effectively measured. Intuitively, this problem can be addressed by simply utilizing existing variational auto-encoder (VAE) based network embedding algorithms. However, the variational posterior distribution in previous VAE based network embedding algorithms is often assumed and restricted to be a mean-field Gaussian distribution or other simple distribution families, which results in poor inference of the embeddings. To alleviate the above defect, we propose a novel VAE-based co-embedding method for attributed network, F-CAN, where posterior distributions are flexible, complex, and scalable distributions constructed through the normalizing flow. We evaluate our proposed models on a number of network tasks with several benchmark datasets. Experimental results demonstrate that there are clear improvements in the qualities of embeddings generated by our model to the state-of-the-art attributed network embedding methods.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Network embedding is a technique that aims at inferring the low-dimensional representations of nodes in a semantic space. In this article, we study the problem of inferring the low-dimensional representations of both nodes and attributes for attributed networks in the same semantic space such that the affinity between a node and an attribute can be effectively measured. Intuitively, this problem can be addressed by simply utilizing existing variational auto-encoder (VAE) based network embedding algorithms. However, the variational posterior distribution in previous VAE based network embedding algorithms is often assumed and restricted to be a mean-field Gaussian distribution or other simple distribution families, which results in poor inference of the embeddings. To alleviate the above defect, we propose a novel VAE-based co-embedding method for attributed network, F-CAN, where posterior distributions are flexible, complex, and scalable distributions constructed through the normalizing flow. We evaluate our proposed models on a number of network tasks with several benchmark datasets. Experimental results demonstrate that there are clear improvements in the qualities of embeddings generated by our model to the state-of-the-art attributed network embedding methods.