An EDA based on Bayesian networks constructed with Archimedean copulas

Mario Rogelio Flores Mendez, Ricardo Landa
{"title":"An EDA based on Bayesian networks constructed with Archimedean copulas","authors":"Mario Rogelio Flores Mendez, Ricardo Landa","doi":"10.1109/NaBIC.2012.6402260","DOIUrl":null,"url":null,"abstract":"In this paper, an estimation of distribution algorithm that adopts a copula Bayesian network as probabilistic graphic model is presented. Multivariate Archimedean copula functions with one parameter are used to model the dependences between variables and the beta distribution is used to describe the univariate marginals. The learning process of the Bayesian network is assisted through a simple technique that relies on the associative property of Archimedean copulas, the use of Kendall's tau coefficient for measuring relations between variables and the relation between tau coefficients and bivariate Archimedean copulas. This paper presents the proposal, together with some initial experiments, which show encouraging results.","PeriodicalId":103091,"journal":{"name":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NaBIC.2012.6402260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an estimation of distribution algorithm that adopts a copula Bayesian network as probabilistic graphic model is presented. Multivariate Archimedean copula functions with one parameter are used to model the dependences between variables and the beta distribution is used to describe the univariate marginals. The learning process of the Bayesian network is assisted through a simple technique that relies on the associative property of Archimedean copulas, the use of Kendall's tau coefficient for measuring relations between variables and the relation between tau coefficients and bivariate Archimedean copulas. This paper presents the proposal, together with some initial experiments, which show encouraging results.
基于阿基米德copula构造贝叶斯网络的EDA
本文提出了一种采用联结贝叶斯网络作为概率图模型的分布估计算法。采用单参数多元阿基米德copula函数来模拟变量间的相关性,用beta分布来描述单变量的边际。贝叶斯网络的学习过程是通过一种简单的技术来辅助的,该技术依赖于阿基米德copula的关联特性,使用Kendall的tau系数来测量变量之间的关系,以及tau系数与二元阿基米德copula之间的关系。本文提出了该方案,并进行了初步实验,取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信