Modified Kalman filtering with an optimal target function

Liang Li, S. Haykin
{"title":"Modified Kalman filtering with an optimal target function","authors":"Liang Li, S. Haykin","doi":"10.1109/ICASSP.1992.226333","DOIUrl":null,"url":null,"abstract":"A general criterion is given to improve the accuracy of the predicted state x(k/k-1) in Kalman filter processing. The criterion is based on the orthogonal relation between the innovations process and past observations. Though this relation is basic to the operation of the Kalman filter, it is often not satisfied in the course of computation because of many target factors. The authors use this relation to construct a target function for minimizing the error. A nonlinear optimal algorithm, combining the standard Kalman filter and the target function equation, is formulated to process the target tracking problem. This algorithm is effective in decreasing the estimation error.<<ETX>>","PeriodicalId":163713,"journal":{"name":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1992.226333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A general criterion is given to improve the accuracy of the predicted state x(k/k-1) in Kalman filter processing. The criterion is based on the orthogonal relation between the innovations process and past observations. Though this relation is basic to the operation of the Kalman filter, it is often not satisfied in the course of computation because of many target factors. The authors use this relation to construct a target function for minimizing the error. A nonlinear optimal algorithm, combining the standard Kalman filter and the target function equation, is formulated to process the target tracking problem. This algorithm is effective in decreasing the estimation error.<>
改进的最优目标函数卡尔曼滤波
给出了卡尔曼滤波处理中提高预测状态x(k/k-1)精度的一般准则。该准则是基于创新过程和过去观测之间的正交关系。虽然这种关系是卡尔曼滤波工作的基础,但由于目标因素较多,在计算过程中往往不能满足这种关系。作者利用这一关系构造了一个使误差最小化的目标函数。提出了一种结合标准卡尔曼滤波和目标函数方程的非线性优化算法来处理目标跟踪问题。该算法能有效地减小估计误差
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信