Energy-efficient flash-memory storage systems with an interrupt-emulation mechanism

Chin-Hsien Wu, Tei-Wei Kuo, Chia-Lin Yang
{"title":"Energy-efficient flash-memory storage systems with an interrupt-emulation mechanism","authors":"Chin-Hsien Wu, Tei-Wei Kuo, Chia-Lin Yang","doi":"10.1145/1016720.1016755","DOIUrl":null,"url":null,"abstract":"One of the emerging critical issues for flash-memory storage systems, especially on the implementations of many embedded systems, is on its programmed I/O nature for data transfers. Programmed-I/O-based data transfers might not only result in the wasting of valuable CPU cycles of microprocessors but also unnecessarily consume much more energy from batteries. This work presents an interrupt-emulation mechanism for flash-memory storage systems with an energy-efficient management strategy. We propose to revise the waiting function in the memory-technology-device (MTD) layer to relieve the microprocessor from busy waiting and to reduce the energy consumption of the system. We show that energy consumption could be significantly reduced with good saving on CPU cycles and minor delay on the average response time in the experiments.","PeriodicalId":127038,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis, 2004. CODES + ISSS 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1016720.1016755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

One of the emerging critical issues for flash-memory storage systems, especially on the implementations of many embedded systems, is on its programmed I/O nature for data transfers. Programmed-I/O-based data transfers might not only result in the wasting of valuable CPU cycles of microprocessors but also unnecessarily consume much more energy from batteries. This work presents an interrupt-emulation mechanism for flash-memory storage systems with an energy-efficient management strategy. We propose to revise the waiting function in the memory-technology-device (MTD) layer to relieve the microprocessor from busy waiting and to reduce the energy consumption of the system. We show that energy consumption could be significantly reduced with good saving on CPU cycles and minor delay on the average response time in the experiments.
具有中断仿真机制的高能效闪存存储系统
对于闪存存储系统,特别是在许多嵌入式系统的实现中,出现的一个关键问题是其用于数据传输的可编程I/O性质。基于i /编程的数据传输不仅会浪费微处理器宝贵的CPU周期,而且还会不必要地消耗更多的电池能量。本文提出了一种具有节能管理策略的闪存存储系统中断仿真机制。我们提出修改MTD层的等待功能,以解除微处理器的忙碌等待,降低系统的能耗。我们表明,在实验中,能源消耗可以显著降低,并且可以很好地节省CPU周期和较小的平均响应时间延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信