Approximation of a class of distributed parameter systems using proper orthogonal decomposition

K. Bartecki
{"title":"Approximation of a class of distributed parameter systems using proper orthogonal decomposition","authors":"K. Bartecki","doi":"10.1109/MMAR.2011.6031372","DOIUrl":null,"url":null,"abstract":"In this paper, approximation of the spatio-temporal response of a hyperbolic distributed parameter system with the use of the proper orthogonal decomposition method is discussed. Based on a simulation data set, representing the profile of a selected process variable, the model reduction procedure is performed. The procedure consists in the projection of the original data into the subspace represented by eigenvectors of the spatial covariance matrix, corresponding to its highest eigenvalues. Influence of the approximation order on the response approximation error and on the data compression ratio is also analyzed.","PeriodicalId":440376,"journal":{"name":"2011 16th International Conference on Methods & Models in Automation & Robotics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Methods & Models in Automation & Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2011.6031372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, approximation of the spatio-temporal response of a hyperbolic distributed parameter system with the use of the proper orthogonal decomposition method is discussed. Based on a simulation data set, representing the profile of a selected process variable, the model reduction procedure is performed. The procedure consists in the projection of the original data into the subspace represented by eigenvectors of the spatial covariance matrix, corresponding to its highest eigenvalues. Influence of the approximation order on the response approximation error and on the data compression ratio is also analyzed.
用适当正交分解逼近一类分布参数系统
本文讨论了用适当的正交分解方法逼近双曲型分布参数系统的时空响应。基于一个模拟数据集,代表一个选定的过程变量的轮廓,执行模型约简过程。该过程包括将原始数据投影到由空间协方差矩阵的特征向量表示的子空间中,对应于其最高特征值。分析了近似阶数对响应近似误差和数据压缩比的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信