DETEKSI SUARA CHORD PIANO MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK

Fajar Ferdiawan, Budi Hartono
{"title":"DETEKSI SUARA CHORD PIANO MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK","authors":"Fajar Ferdiawan, Budi Hartono","doi":"10.36595/jire.v5i1.552","DOIUrl":null,"url":null,"abstract":"Piano merupakan alat musik yang paling digemari oleh masyarakat selain gitar, piano dapat menjadi instrument yang baik untuk mengiringi penyanyi walaupun tanpa iringan alat musik yang lain. Piano terdiri dari not yang mencapai 6.5 oktaf sampai lebih dari 7 oktaf, dari not yang ada dapat dibentuk menjadi chord yang sesuai dengan tangga nadanya. Ada beberapa tangga nada yaitu pentatonic, chromatic, serta diatonic, dari ketiga tangga nada tersebut tangga nada diatonic-lah yang sering dipakai. Tangga nada diatonic juga memiliki 2 jenis yaitu diatonic major dan diatonic minor. Tangga nada diatonic major umumnya digunakan pemula untuk belajar piano. Penelitian ini akan mengklasifikasikan chord piano major scale dengan menggunakan metode Convolutional Neural Network. Convolutional Neural Network digunakan untuk mendeteksi serta mengenali object pada sebuah gambar. Penelitian ini juga menggunakan library Keras yang merupakan jaringan syaraf tiruan yang berjalan diatas TensorFlow untuk mempercepat proses pengolahan citra. Hasil uji dengan menggunakan 240 dataset chord piano menghasilkan akurasi tertinggi mencapai 98%.","PeriodicalId":367275,"journal":{"name":"Jurnal Informatika dan Rekayasa Elektronik","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika dan Rekayasa Elektronik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36595/jire.v5i1.552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Piano merupakan alat musik yang paling digemari oleh masyarakat selain gitar, piano dapat menjadi instrument yang baik untuk mengiringi penyanyi walaupun tanpa iringan alat musik yang lain. Piano terdiri dari not yang mencapai 6.5 oktaf sampai lebih dari 7 oktaf, dari not yang ada dapat dibentuk menjadi chord yang sesuai dengan tangga nadanya. Ada beberapa tangga nada yaitu pentatonic, chromatic, serta diatonic, dari ketiga tangga nada tersebut tangga nada diatonic-lah yang sering dipakai. Tangga nada diatonic juga memiliki 2 jenis yaitu diatonic major dan diatonic minor. Tangga nada diatonic major umumnya digunakan pemula untuk belajar piano. Penelitian ini akan mengklasifikasikan chord piano major scale dengan menggunakan metode Convolutional Neural Network. Convolutional Neural Network digunakan untuk mendeteksi serta mengenali object pada sebuah gambar. Penelitian ini juga menggunakan library Keras yang merupakan jaringan syaraf tiruan yang berjalan diatas TensorFlow untuk mempercepat proses pengolahan citra. Hasil uji dengan menggunakan 240 dataset chord piano menghasilkan akurasi tertinggi mencapai 98%.
德特克斯弦钢琴蒙古纳坎方法卷积神经网络
除了吉他,钢琴是社会上最受欢迎的乐器,它可以成为歌手在没有其他伴奏的情况下伴奏的好乐器。钢琴由一个6。5个八度到7个八度以上的音符组成,从一个音符到另一个八度以上,可以根据音阶形成和弦。有几个音阶,其中有五色音阶,以及二色音阶,都是diatonic音阶。二和弦音阶也有两种主要的二极管和小二极管。主要的二极管音阶通常用于初学者的钢琴课。本研究将使用反导神经网络将大scale钢琴的和弦分类。用于检测和识别图像中的物体。该研究还使用了硬图书馆,它是一种模仿神经网络,通过腾河流动来加速图像处理过程。使用240种分析钢琴弦的测试结果产生的最准确的98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信