Dense 3D Reconstruction of Endoscopic Polyp

A. Deka, Y. Iwahori, M. Bhuyan, Pradipta Sasmal, K. Kasugai
{"title":"Dense 3D Reconstruction of Endoscopic Polyp","authors":"A. Deka, Y. Iwahori, M. Bhuyan, Pradipta Sasmal, K. Kasugai","doi":"10.5220/0006720701590166","DOIUrl":null,"url":null,"abstract":"This paper proposes a model for 3D reconstruction of polyp in endoscopic scene. 3D shape of polyp enables better understanding of the medical condition and can help predict abnormalities like cancer. While there has been significant progress in monocular shape recovery, the same hasn’t been the case with endoscopic images due to challenges like specular regions. We take advantage of the advances in shape recovery and suitably apply these with modifications to the scenario of endoscopic images. The model operates on 2 nearby video frames. ORB features are detected and tracked for computing camera motion and initial rough depth estimation. This is followed by a dense pixelwise operation which gives a dense depth map of the scene. Our method shows positive results and strong correspondence with the ground truth.","PeriodicalId":162397,"journal":{"name":"Bioimaging (Bristol. Print)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimaging (Bristol. Print)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006720701590166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a model for 3D reconstruction of polyp in endoscopic scene. 3D shape of polyp enables better understanding of the medical condition and can help predict abnormalities like cancer. While there has been significant progress in monocular shape recovery, the same hasn’t been the case with endoscopic images due to challenges like specular regions. We take advantage of the advances in shape recovery and suitably apply these with modifications to the scenario of endoscopic images. The model operates on 2 nearby video frames. ORB features are detected and tracked for computing camera motion and initial rough depth estimation. This is followed by a dense pixelwise operation which gives a dense depth map of the scene. Our method shows positive results and strong correspondence with the ground truth.
内镜下息肉密集三维重建
提出了一种用于内镜下息肉三维重建的模型。息肉的3D形状可以更好地了解医疗状况,并有助于预测癌症等异常情况。虽然在单眼形状恢复方面取得了重大进展,但由于镜面区域等挑战,内窥镜图像的情况并非如此。我们利用形状恢复的进步,并适当地将这些修改应用于内窥镜图像的场景。该模型在附近的2个视频帧上运行。检测和跟踪ORB特征,用于计算相机运动和初始粗略深度估计。接下来是一个密集的像素操作,它给出了一个密集的场景深度图。我们的方法显示出积极的结果,并且与实际情况有很强的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信