HPC-gSpan: An FPGA-based parallel system for frequent subgraph mining

Athanasios Stratikopoulos, Grigorios Chrysos, I. Papaefstathiou, A. Dollas
{"title":"HPC-gSpan: An FPGA-based parallel system for frequent subgraph mining","authors":"Athanasios Stratikopoulos, Grigorios Chrysos, I. Papaefstathiou, A. Dollas","doi":"10.1109/FPL.2014.6927441","DOIUrl":null,"url":null,"abstract":"Graph mining is an important research area within the domain of data mining. One of the most challenging tasks of graph mining is frequent subgraph mining. This work presents the first FPGA-based implementation, to the best of our knowledge, of the most efficient and well-known algorithm for the Frequent Subgraph Mining (FSM) problem, i.e. gSpan. The proposed system, named High Performance Computing-gSpan (HPC-gSpan), achieves manyfold speedup vs. the official software solution of the gboost library when executed on a high-end CPU for various real-world datasets.","PeriodicalId":172795,"journal":{"name":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 24th International Conference on Field Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2014.6927441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Graph mining is an important research area within the domain of data mining. One of the most challenging tasks of graph mining is frequent subgraph mining. This work presents the first FPGA-based implementation, to the best of our knowledge, of the most efficient and well-known algorithm for the Frequent Subgraph Mining (FSM) problem, i.e. gSpan. The proposed system, named High Performance Computing-gSpan (HPC-gSpan), achieves manyfold speedup vs. the official software solution of the gboost library when executed on a high-end CPU for various real-world datasets.
HPC-gSpan:基于fpga的频繁子图挖掘并行系统
图挖掘是数据挖掘领域的一个重要研究领域。频繁子图挖掘是图挖掘中最具挑战性的任务之一。这项工作提出了第一个基于fpga的实现,据我们所知,对于频繁子图挖掘(FSM)问题,即gSpan,最有效和最知名的算法。该系统被命名为高性能计算- gspan (HPC-gSpan),当在高端CPU上执行各种实际数据集时,与gboost库的官方软件解决方案相比,实现了多倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信